Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 20

6. Выполните контрольные задания

Основной уровень:1. Найдите угол между гранями правильной треугольной пирамиды с равными рёбрами. 2. Докажите, что диагональное сечение АА1С1С и BB1DD1 куба АBCDA1B1C1D1 перпендикулярны. 3. Докажите, что если две пересекающиеся плоскости перпендикулярны третьей плоскости, то линия пересечения первых двух плоскостей будет перпендикулярна третьей плоскости.

Повышенный уровень: Равнобедренный прямоугольный треугольник АВС (угол С=90о) перегнули по высоте СD таким образом, что плоскости ACD и BCD образовали прямой угол. Найдите углы ADB и ACB.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Расстояние между плоскостью и не принадлежащей ей точкой называется длина перпендикуляра, опущенного из точки на плоскость.

Определение. Расстоянием между двумя параллельными плоскостями называется расстояние от какой-нибудь точки одной плоскости до другой плоскости.

Докажем, что расстояние между параллельными плоскостями не зависит от выбора точки.

Доказательство. Пусть даны параллельные плоскости a и b, точки А1, А2 плоскости a и их ортогональной проекции В1, В2 на плоскость b. Тогда расстояние от точки А1 до плоскости b равно А1В1, а расстояние от точки А2 до плоскости b равно А2В2. четырёхугольник А1В1В2А2 – прямоугольник Þ А1В1=А2В2.

Определение. Отрезок, соединяющий точки на скрещивающих прямых и перпендикулярный этим прямым, называется их общим перпендикуляром. Длина общего перпендикуляра, называется расстоянием между скрещивающимися прямыми.

Теорема. Общий перпендикуляр скрещивающихся прямых существует и единствен.

Доказательство.

Пусть а,b- скрещивающиеся прямые. Через одну из них, например b, проведём плоскость b, параллельную прямой а. Это можно сделать, проведя прямую а’, параллельную а и пересекающую b. Тогда пересекающие прямые а’, b будут определять искомую плоскость b. Рассмотрим ортогональную проекцию а0 прямой а на плоскость b. Она пересечёт прямую b в некоторой точке В, которая является ортогональной проекцией некоторой точки А прямой а. Отрезок АВ будет искомым. Действительно, он перпендикулярен плоскости b и, Þ перпендикулярен прямой b и а0 параллельна а, т. е. он является общим перпендикуляром прямых a и b. Самостоятельно докажите единственность.

2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля

1. Что называется расстоянием между плоскостью и не принадлежащей ей точкой?

2. Дайте определение расстояния между двумя параллельными плоскостями.

3. Что является общим перпендикуляром и расстоянием между скрещивающимися прямыми?

4. Сформулируйте теорему об общем перпендикуляре скрещивающихся прямых.

3. Примите участие в учебной беседе. Материал для беседы

1. Из точки А, не принадлежащей плоскости a, наклонная к этой плоскости. Определите угол между этой наклонной и плоскостью a, если расстояние от точки А до плоскости a: равно ортогональной проекции наклонной; в два раза меньше самой наклонной.

2. В кубе АBCDA1B1C1D1 с ребром а найдите расстояние между вершиной А и: ребром CD; диагональю BD; диагональю АС1.

Страницы: 15 16 17 18 19 20 21 22 23 24 25

Полезная информация:

Изучение свойств и признаков четырехугольников
Изучение свойств четырехугольников обычно не вызывают затруднений. При установлении различных свойств и признаков параллелограмма широко используются свойства и признаки равных треугольников, свойства углов, образованных при пересечении двух параллельных прямых третей, признаки параллельности. Мате ...

Классификация – один из способов логического запоминания
Классификация – это сложная мыслительная операция, требующая умения анализировать материал, сопоставлять друг с другом отдельные его элементы, находить в них общие признаки, осуществлять на этой основе обобщение, распределять предметы по группам на основании выделенных в них и отраженных в слове – ...

Разработка проекта «Формирование системы информационного образования школьников МОУ «Сахарозаводская сош»
Проект Школа и библиотека есть альфа и омега образования» Доминго Ф. Сармиенто Проблема: Отсутствие системы информационного образования школьников. Определение: Информационная культура личности – одна из составляющих общей культуры человека; совокупность информационного мировоззрения и системы знан ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru