Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 18

Определение. Углом между отрезком и плоскостью будем называть угол между соответствующей прямой и этой плоскостью.

2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля

1. Что называется наклонной к плоскости?

2. Сформулируйте теоремы о трёх перпендикулярах, перпендикуляре, проедённом из точки к плоскости.

3. Что называется углом между наклонной и плоскостью, отрезком и плоскостью.

4. В чём заключается теорема об угле между наклонной и плоскостью?

3. Примите участие в учебной беседе. Материал для беседы

1. Докажите утверждение, обратное теореме о трёх перпендикулярах: «Если прямая, лежащая в плоскости, перпендикулярна наклонной к этой плоскости, то она перпендикулярна и ортогональной проекции этой наклонной».

2. Докажите, что ортогональная проекция наклонной короче ее самой.

3. Точка М равноудалена от всех точек окружности. Верно ли, что она лежит на перпендикуляре к плоскости окружности, проведенной через её центр?

4. Найдите геометрическое место точек в пространстве, равноудаленных от двух данных точек

4. Самостоятельно выполните задание, затем проверьте решение

1. В кубе АBCDA1B1C1D1 докажите перпендикулярность прямых АС1 и ВD.

2. Докажите, равные наклонные, проведённые из одной точки к плоскости, имеют равные ортогональные проекции на эту плоскость.

3. Докажите, что в правильной пирамиде высота h проходит через центр основания.

4. Найдите угол между диагональю куба и плоскостью его основания.

6. Выполните контрольные задания

Основной уровень:1. Докажите, что в правильной треугольной пирамиде сторона основания перпендикулярна скрещивающемуся с ней ребру. 2. Найдите геометрическое место точек в пространстве, равноудалённых от трёх данных точек, не принадлежащих одной прямой.

Повышенный уровень: В правильной треугольной пирамиде сторона основания а, боковое ребро b. Найдите угол наклона ребра к плоскости основания.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Двугранным углом в пространстве называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Полуплоскости называются гранями двугранного угла, а их общая граничная прямая – ребром двугранного угла.

Определение. Пусть a и b-полуплоскости с общей граничной прямой с. рассмотрим плоскость g, перпендикулярную прямой с, и обозначим линии её пересечения с полуплоскостями a и b через а и b соответственно. Угол между этими лучами называется линейным углом данного двугранного угла.

Докажем, что величина линейного угла не зависит от выбора плоскости g.

Доказательство. Пусть g1, g2 – плоскости, перпендикулярные прямой с и пересекающие полуплоскости a и b по лучам а1, а2 и b1, b2 соответственно. Прямые а1 и а2, b1 и b2 сонаправлены, так как они перпендикулярны одной и той же прямой с Þ, углы, образованные этими прямыми, равны.

Страницы: 13 14 15 16 17 18 19 20 21 22 23

Полезная информация:

Понятие о памяти и её физиологических механизмах
На протяжении тысячелетий философы и литераторы интуитивно чувствовали, что память о прошлом – центр душевной жизни человека. Памяти придавалось мистическое значение. Древние греки считали богиню памяти Мнемозину матерью девяти муз, которые покровительствовали всем известным в то время наукам и иск ...

Принцип доступности
Процесс обучения необходимо строить с учетом возрастных и индивидуальных особенностей учащихся, уровня их обученности и воспитанности. Однако доступность не значит «легкость», обучение не может обойтись без напряжения умственных сил учащихся. Доступность обучения прежде всего определяется возрастны ...

Кризисы детской одаренности
Многие авторы отмечают неравномерную динамику развития детской одаренности (2,5). Феномен "исчезновения", "затухания" одаренности давно интересует практиков - психологов и педагогов. Что же делать, чтобы детская одаренность не исчезала? А если она должна исчезнуть, то стоит ли т ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru