Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 16

Теорема (признак перпендикулярности прямой и плоскости, достаточное условие перпендикулярности прямой и плоскости).Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна и самой плоскости.

Доказательство. Пусть прямая а перпендикулярна прямой b1,b2 плоскости b, пересекающиеся в точке О. Рассмотрим произвольную прямую b плоскости b.Проведем через точку О прямые a', b' соответственно, параллельным прямым а и b. Для доказательства параллельности прямой а, b, достаточно доказать перпендикулярность прямых a', b'. Для этого в плоскости b проедем прямую, пересекающую прямую b1, b2, b' в точках B1, B2, B соответственно. Отложим на прямой а' от точки О равные отрезки ОС, ОD и соединим точки C, D с точками B1,B2.В треугольнике OB1C и OB1D=(по первому признаку равенства треугольников). Отсюда следует, B1C=B1D. Аналогично B2C=B2D. Треугольник B1B2C = треугольнику B1B2D (по третьему признаку равенства треугольников). Отсюда следует, угол CB1B = углу DB1B. Треугольник B1BC = треугольнику B1BD (по первому признаку). Таким образом, BC=BD. Треугольник OBC = треугольнику OBD (по третьему признаку). Отсюда следует, угол BOC = углу BOD=90o, т. е. а’ перпендикулярна b’.

Определение. Пусть точка А не принадлежит плоскости p. Проведем прямую а, проходящую через эту точку и перпендикулярную p.Точку пересечения прямой а с плоскостью p обозначим О. Отрезок АО называется перпендикуляром, опущенным из точки А на плоскость p.

Определение. Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды.

Определение. Ортогональным проектированием называется параллельное проектирование в направлении прямой, перпендикулярной плоскости. Ясно, что ортогональное проектирование обладает всеми свойствами параллельного проектирования.

Определение. Цилиндр называется прямым, если его образующие перпендикулярны плоскости основания.

2. Проверьте освоение теоретического материала. Ответьте на вопросы для самоконтроля

1. Какая прямая называется перпендикулярной плоскости?

2. Сформулируйте признак перпендикулярности прямой и плоскости.

3. Какой отрезок называется перпендикулярным?

4.Что называется ортогональным проектированием.

5. Какой цилиндр является прямым?

6. Что называется высотой пирамиды?

3. Примите участие в учебной беседе. Материал для беседы

1. Верно ли, что если прямая перпендикулярна каким-нибудь двум прямым плоскости, то она перпендикулярна этой плоскости?

2. Докажите, что в прямоугольной пирамиде боковое ребро перпендикулярно плоскости основания.

3. Найдите диагональ прямоугольного параллелепипеда, рёбра которого равны a, b, c.

4. Докажите, что если прямая а перпендикулярна плоскости a и прямая b параллельна прямой а, то прямая b также перпендикулярна плоскости a.

5. В правильной треугольной пирамиде сторона основания равна а, боковое ребро b. Найдите высоту h пирамиды.

4. Самостоятельно выполните задания, затем проверьте решение

1. Докажите, что в прямоугольном параллелепипеде диагональ основания перпендикулярна пересекающему её боковому ребру.

2. Докажите, что если прямая a перпендикулярна плоскости a и плоскость b÷÷a, то прямая а перпендикулярна плоскости b.

Страницы: 11 12 13 14 15 16 17 18 19 20 21

Полезная информация:

Методы научного познания в обучении математике
Одно из центральных мест в методике преподавания математики занимают методы обучения. Знание методов обучения математике необходимо для организации эффективного обучения школьников. Выделяют следующие методы обучения математики: методы обучения, выделяемые по источнику знаний; методы обучения, опре ...

Логические методы познания
К логическим методам познания относятся: анализ, синтез, сравнение, аналогия, абстрагирование, обобщение, конкретизация, индукция, дедукция, классификация и др. Логические методы познания особенно необходимы при отыскании решения задач. Рассмотрим, например, следующую задачу: «Определить площадь че ...

Формы и методы обучения графике
Метод обучения - понятие весьма сложное и неоднозначное. До сих пор ученые, занимающиеся этой проблемой, не пришли к единому пониманию и толкованию сути этой педагогической категории. И дело не в том, что этой проблеме уделялось недостаточно внимания. Проблема состоит в многогранности этого понятия ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru