Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 21

3. Чему равно расстояние между параллельными гранями куба?

4. Из точки пересечения диагоналей прямоугольника, к его плоскости проведён перпендикуляр. Докажите, что любая точка этого перпендикуляра равноудалена от вершины прямоугольника.

5. Докажите, что расстояние между скрещивающимися прямыми являются наименьшим из всевозможных между точками на этих прямых.

4. Самостоятельно выполните задания, затем проверьте решение

1. Докажите, что плоскости АВ1D1 и ВDС1 куба АBCDA1B1C1D1 параллельны. Найдите расстояние этими плоскостями, если ребро куба равно а.

2. В прямой четырёхугольной призме, в основании которого ромб со стороной а и острым углом j, найдите расстояние между противоположными боковыми гранями.

3. Докажите, что расстояние между скрещивающимися прямыми равно расстоянию параллельными плоскостями, в которых лежат эти прямые.

4. В правильной треугольной пирамиде с ребром а найдите расстояние между скрещивающимися рёбрами.

5. Найдите геометрическое место точек пространства, равноудаленных от двух параллельных прямых. (плоскость, перпендикулярная плоскости данных параллельных прямых и проходящая через прямую, равноудаленную от данных)

5. Самостоятельно оцените, достигли ли цели. Для этого вернитесь на начало модуля и прочтите, какие перед вами стояли цели

6. Выполните контрольные задания

Основной уровень:1. Из точки О пересечения диагоналей ромба АВСD проведён к его плоскости перпендикуляр OS. Докажите, что точка S равноудалена от всех сторон ромба. 2. Для куба АBCDA1B1C1D1 с ребром а найдите расстояние между скрещивающимися прямыми: АD иА1С1; АС1 и DD1; AD и A1B1; АС и ВD1; АС и DD1; АС1 и ВD. 3. Докажите, что середины всех отрезков, концы которых принадлежат двум скрещивающимся прямым, лежат в одной плоскости.

Повышенный уровень:1. Докажите, что если прямые параллельны плоскости, то кратчайшее расстояние между этой прямой и всеми прямыми плоскости, ей не параллельными, одно и тоже. 2. Три параллельные между собой прямые не лежат в одной плоскости. Из точки А, принадлежащей первой прямой, проведены перпендикуляры АВ и АС на вторую и третью прямые. Докажите, что длина отрезка ВС служит расстоянием между второй и третьей прямой.

Комплекс дополнительных задач

1. Прямые ОВ и СD параллельные, ОА и СD – скрещивающиеся. Найдите угол между ОА и СD, если: а) ÐАОВ=40°; б) ÐАОВ=135°; в) ÐАОВ=90°.

2. Прямая а параллельна стороне ВС параллелограмма АВСD и не лежит в плоскости параллелограмма. Найдите угол между а и СD, если один из углов параллелограмма равен: а) 50°; б) 121°.

3. Прямая m параллельна диагонали BD ромба АВСD и не лежит в плоскости ромба. Найдите угол: а) между прямыми m и АС; б) между m и АD, если ÐАВС=128°.

4. В пространственном четырехугольнике АВСD стороны АВ и СD равны. Докажите, что прямые АВ и СD образуют равные углы с прямой, проходящей через середины отрезков ВС и АD.

5. Докажите, что два угла с соответственно параллельными сторонами либо равны, либо их сумма равна 180°.

6. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC^B1C1 и АВ^А1 D1, если ÐВАD=90°; б) АВ^СC1 и DD1^А1 В1, если АВ^DD1.

7. В тетраэдре ABCD известно, что ВС^АD. Докажите, что АD^MN, где M и N – середины ребер АВ и АС.

Страницы: 16 17 18 19 20 21 22 23 24 25 26

Полезная информация:

Технология организации учебно-воспитательного процесса на основе дифференцированного подхода к учащимся при обучении и проверки знаний
Важным условием правильной организации учебно-воспитательного процесса считается выбор рациональной системы методов и приёмов обучения и оценки качества знаний, её оптимизация с учётом возраста учащихся, уровня их подготовки, развития общеучебных умений, специфике решаемых образовательных и воспита ...

Психолого-педагогические основы содержания и технологий современного урока литературы
Среди многих гуманитарных предметов, включенных в программу, особое место занимает литература. Художественное произведение представляет собой некоторую знаковую модель, в которой зафиксирован его герой (человек или антропоморфизированный объект): его характер, душевные переживания, страсти, ум, вол ...

Принцип рекапитуляции Гренвилла Стэнли Холла
Гренвилл Стэнли Холл родился в феврале 1844 г. в небольшом городке Ашфидд, штат Массачусетс, в семье небогатых, но просвещенных и религиозных фермеров. Родители хотели, чтобы Холл связал свою жизнь с религией. В 1863 г., когда Холлу исполнилось 19 лет, он поступил в колледж Уильямса, решившись не б ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru