Основные операции над векторами

Страница 8

Аналогично, умножая обе части равенства (*) на вектор получим .

Таким образом, для любого вектора получается разложение

.

Задача 1. Найти координаты единичного вектора, одинаково направленного с вектором (3; 4).

Решение. Длина вектора равна . Длина единичного вектора , направленного одинаково с вектором , равна единице.

Чтобы вычислить координаты вектора , разделим обе части предыдущего равенства на :

.

Следовательно, координаты единичного вектора , одинаково направленного с вектором , равны .

6. Примеры задач, решаемых с помощью векторов

Задача №1.

Докажите, что отрезки, соединяющие середины противоположных сторон и середин диагоналей произвольного четырехугольника, имеют общую середину.

ABCD – данный четырехугольник.

K, L, M, N – середины сторон AB, BC, CD, DA.

P, Q – середины диагоналей AC, BD.

S1, S2, S3 – середины отрезков KM, LN, PQ.

По правилу параллелограмма, если K – середина AB, то для любой точки O будет

. Аналогично, .

Тогда . Аналогично .

Таким образом, S1 = S2 = S3 = S – общая середина отрезков KM, LN, PQ.

Задача №2.

Дан четырехугольник ABCD. Прямая, проходящая через точку A параллельно BC, пересекает BD в точке M, а прямая, проходящая через точку B параллельно AD, пересекает AC в точке N. Доказать, что MN параллельна CD.

Пусть O – точка пересечения диагоналей четырехугольника ABCD. Тогда rBOC подобен rMOA с коэффициентом подобия α, следовательно, и . Далее, rDOA подобен rBON с коэффициентом подобия β, следовательно, и . Теперь

Таким образом, CD ║MN.

Задача №3.

Дан пятиугольник ABCDE. Середины сторон AB и CD, а также BC и DE соединены отрезками. Середины H и P полученных отрезков снова соединены. Доказать, что HP ║AE и .

K, L, M, N – середины сторон AB, BC, CD, DE.

H, P – середины отрезков KM и LN.

Рассуждая так же, как и в Задаче №1, получим, что для любой точки O будет и . Отсюда , и значит HP ║AE и .

Задача №4.

Доказать, что в трапеции прямая, соединяющая точки пересечения диагоналей и продолжений боковых сторон делит основания трапеции пополам.

ABCD – трапеция AD ║BC. M, N – середины оснований AD и BC, , .

rBPC подобен rAPD с коэффициентом подобия α, следовательно, и . Тогда , а значит, точка P лежит на прямой MN.

Страницы: 3 4 5 6 7 8 9 10

Полезная информация:

Возрастные особенности учебной деятельности школьников 7-9 классов
Учение для подростка является главным видом деятельности. В учебной деятельности подростка имеются свои трудности и противоречия, но есть и свои преимущества, на которые может и должен опираться педагог. Большим достоинством подростка является его готовность ко всем видам учебной деятельности, кото ...

Развитие речи у детей младшего дошкольного возраста с нарушениями интеллекта
У детей с нарушениями интеллекта развитие речи существенно отличается от того, которое описано выше. Отставание в развитии речи начинается у них с младенчества и продолжает накапливаться в раннем детстве. Соответственно, к переходу дошкольного возраста у них нет готовности к ее усвоению. Не сформир ...

Японское общество
Япония в настоящее время является не только одной из ведущих стран капиталистического мира по уровню промышленно-технического развития, но и страной с высоким уровнем общей грамотности, которая есть одно из важных, необходимых оснований развития современной культурной жизни. После реформ 1868 г. (& ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru