Основные операции над векторами

Страница 3

Решение. Точки А, В, С, D не лежат на одной прямой. Рассмотрим векторы и . Вычислим их координаты , . Координаты векторов одинаковы, поэтому . Из равенства векторов следует, что и , т.е. у четырехугольника ABCD две противолежащие стороны равны и параллельны, следовательно, он – параллелограмм.

Задача 2. Даны три точки: А (1; 1), В (-1; 0), С (0; 1). Найдите такую точку D (x; у), чтобы векторы и были равны.

Решение. Вектор имеет координаты –2, -1. Вектор имеет координаты х-0, у-1. Так как =, то х-0=-2, у-1=-1. Отсюда находим координаты точки D: х=-2, у=0.

Задача 3. Даны три вершины параллелограмма ABCD: А (1; 1), В (3; 4), С (8; 5). Найти координаты четвертой вершины D и точку пересечения диагоналей.

Решение. Точка пересечения диагоналей – середина каждой из диагоналей. Поэтому она является серединой отрезка АС и имеет координаты:

; .

Так как точка пересечения диагоналей является серединой отрезка BD, можно найти координаты четвертой вершины D:

; .

Отсюда х=6, у=2, т.е. D (6; 2).

Сложение и вычитание векторов

Суммой векторов и с координатами а1, а2 и b1, b2 называется вектор с координатами а1+b1, a2+b2, т.е.

.

Для любых векторов , , имеют место следующие свойства:

1) (переместительный закон);

2) (распределительный закон);

3) .

Для доказательства достаточно сравнить соответствующие координаты векторов, стоящих в правой и левой частях равенств. Мы видим, что они равны. А векторы с соответственно равными координатами равны.

Теорема. Каковы бы ни были точки А, В, С имеет место векторное равенство .

Доказательство. Пусть , , – данные точки (см. рисунок 5). Вектор имеет координаты , , вектор имеет координаты , . Следовательно, вектор имеет координаты , . А это есть координаты вектора . Значит, векторы и равны. Теорема доказана.

Доказанная теорема дает возможность следующего графического построения суммы произвольных векторов и . Надо от конца вектора отложить вектор равный вектору . Тогда вектор, начало которого совпадает с началом вектора , а конец – с концом вектора , будет суммой векторов и (см. рисунок 6). Такой способ называется «правилом треугольника» сложения векторов.

Страницы: 1 2 3 4 5 6 7 8

Полезная информация:

Понятие когнитивной деятельности учащихся при обучении английскому языку
Каждый период развития личности учащегося представляет собой качественно своеобразную ступень формирования индивидуума. Это своеобразие подчеркивал отечественный психолог Л.С. Выготский, когда сравнивал развитие ребенка с превращением гусеницы в куколку, а куколки в бабочку. Результативность обучен ...

Учебное исследование в структуре познавательной деятельности школьников
В настоящий момент особенно остро встает вопрос подготовки ученика, стремящегося действовать самостоятельно, за рамками требований учителя, не ограничивающего сферу своих интересов и активного исследования предлагаемым ему учебным материалом, умеющего представлять и аргументировано отстаивать свое ...

Анализ результатов эмпирического исследования аспектов формирования социально-профессиональной компетенции в учреждениях начального профессионального образования
Эмпирической базой исследования стал Курский Торгово-Экономический колледж. В исследовании приняли участие 87 человек. Учащиеся первого курса групп 1 ТОВ «А» и 1ОРГ «А» и третьего - группы 3 ТОВ «А» и 3 ОРГ «А». Используя данные, полученные в ходе исследования (Приложение1 таблица 6, 7, 8, 9) мы пр ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru