Основные операции над векторами

Страница 2

Координаты вектора

Пусть вектор имеет началом точку А1(х1; у1), а концом точку А2(х2; у2) (см. рисунок 4).

Координатами вектора будем называть числа а1=х2-х1, а2=у2-у1. Принято записывать (а1; а2) или просто . Координаты нулевого вектора равны нулю.

Применив формулу, выражающую расстояние между двумя точками по их координатам, выводится формула определения абсолютной величины (модуля) вектора с координатами а1 и а2, которая будет равна .

Теорема. Равные векторы имеют равные соответствующие координаты. Обратная: если у векторов соответствующие координаты равны, то векторы равны.

Данную теорему и обратную ей можно доказать двумя способами.

Доказательство 1. Пусть А1(х1; у1) и А2(х2; у2) – начало и конец вектора . Так как равный ему вектор получается из вектора параллельным переносом, то его началом и концом будут соответственно , . Отсюда видно, что оба вектора и имеют одни и те же координаты: х1-х2, у1-у2.

Обратное утверждение доказывается следующим образом. Пусть соответствующие координаты векторов и равны. Докажем, что векторы равны.

Пусть и – координаты точки , а и – координаты точки . По условию теоремы: , . Отсюда , . Параллельный перенос, заданный формулами

, ,

переводит точку А1 в точку , а точку А2 в точку , т.е. векторы и равны, что и требовалось доказать.

Доказательство 2. Пусть векторы и равны. Это значит, что они имеют одинаковые направления и равные длины: (см. рисунок 4). прямоугольные треугольники А1А2А и В1В2В равны по гипотенузе и острому углу. Из их равенства следует равенство катетов: А1А=В1В и АА2=ВВ2 или, учитывая координаты точек А1(х1, у1), А2(х2, у2), В1(х3, у3), В2(х4, у4), получим х2-х1=х4-х3 и у2-у1=у4-у3.т.е. координаты равных векторов равны.

Пусть координаты векторов и равны. Тогда катеты прямоугольных треугольников А1А2А и В1В2В равны и DА1А2А=DВ1В2В. Из равенства треугольников следует равенство гипотенуз А1А2 и В1В2, т.е. , и параллельность прямых А1А2 и В1В2, так как ÐА1А2А=ÐВ1В2В. Следовательно, векторы и равны, так как они имеют одинаковые направления и равные длины. Что и требовалось доказать.

Задача 1. Доказать, что четырехугольник АВСD – параллелограмм, если заданы координаты его вершин: А (2; 3), В (4; 4), С (8; 4), D (6; 1).

Страницы: 1 2 3 4 5 6 7

Полезная информация:

Динамика сформированности уровня знаний детей старшего дошкольного возраста о социальной действительности
Для определения эффективности разработанной педагогической технологии воспитания у детей старшего дошкольного возраста средствами народного музыкального творчества был проведен контрольный эксперимент. Эксперимент проводился по методике констатирующего эксперимента. В данном эксперименте диагностир ...

Стили воспитания в семьях, воспитывающих детей с ДЦП и без данной патологии: результаты исследования и их обсуждения
При проведения проективной методики Баркан А.И.РОД, целю которой являлось определение стиля воспитания в семьях, воспитывающих ребенка с ДЦП и без данной патологии мы получили данные. Рис. 2. Стили семейного воспитания в семьях, воспитывающих детей с ДЦП и без данной патологии Данные представленные ...

Педагогическое общение
С каждым днем накапливается все больше научных фактов, которые подтверждают важность учета "человеческого фактора" как того узла вопросов, который нельзя обойти, решая задачи повышения эффективности производства, развития науки, культуры. Две главные фигуры в школе - учитель и ученик. Их ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru