Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 9

Поскольку через прямую и точку вне этой прямой проходит единственная плоскость, то этой плоскостью будет плоскость α. Но тогда прямая b лежала бы в плоскости α, что противоречит условию. Следовательно, а и b лежат в разных плоскостях, т.е. скрещиваются.

Исторические сведения. Вопрос о количестве прямых, проходящих через данную точку и параллельных данной прямой, имеет давнюю и интересную историю. Среди аксиом в “Началах” Евклида пятый по счету постулат по своему содержанию совпадает с аксиомой параллельности: “Через точку, взятую вне данной прямой, можно провести не более одной прямой, параллельной этой прямой”. На протяжении двух тысячелетий после Евклида математика пыталась доказать этот постулат, однако все их попытки заканчивались неудачей. Лишь в 1826 г. великий русский геометр Н. И.Лобачевский доказал, что этот постулат нельзя логически вывести из других постулатов Евклида, т.е. нельзя доказать. Поэтому или его можно взять в качестве аксиомы, или в качестве аксиомы может быть взято утверждение о существовании нескольких прямых, проходящие через данную точку и параллельных данной прямой. Положив в основу геометрии эту новую аксиому параллельности, Лобачевский создал совершенно новую, неевклидову геометрию, которая была названа геометрией Лобачевского.

2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля.

1. Какие прямые называются параллельными, скрещивающимися? Покажите на параллелепипеде ребра, параллельные и скрещивающиеся с ребром АВ.

2. Какими способами может быть задана плоскость?

3. Сформулируйте признак скрещивающихся прямых.

4. Назовите случаи взаимного расположения прямых в пространстве.

3. Примите участие в учебной беседе. Материал для беседы

1. На модели параллелепипеда, призмы и пирамиды укажите пары параллельных и скрещивающихся ребер, ответ обоснуйте.

2. Какие две прямые в пространстве не являются параллельными? Почему?

3. Верно ли, что 2 прямые, лежащие в разных плоскостях скрещиваются?

4. Три вершины параллелограмма принадлежат одной плоскости. Верно ли, что и четвертая вершина принадлежит той же плоскости? Почему?

4. Самостоятельно выполните задания, затем проверьте решение

1. Прямая с пересекает параллельные прямые а и в. докажите, что прямые а, в и с лежат в одной плоскости.

2. Пусть а и b пересекающиеся прямые, с- параллельна b. Что можно сказать о взаимном расположении плоскостей, определяемых прямыми а и b, b и с?

3. Пусть а и b-скрещивающиеся прямые. Известно, что прямая а лежит в плоскости a. Известно, что прямая а лежит в плоскости a. Определите может ли прямая в:

А) лежать в плоскости a;

Б) быть параллельной плоскости a;

В) пересекать плоскость a.

Ответ подтвердите чертежами.

5. Выполните контрольные задания

Основной уровень: 1. Пусть а и b- скрещивающиеся прямые. Прямые А1В1 и А2В2 пересекают прямые а и b. Могут ли прямые А1В1 и А2В2 быть пересекающимися или параллельными (рис.5)?

2. Седьмое свойство стереометрии в "Началах" Евклида формулируется так: "Если будут две параллельные прямые и на каждой из них взято по произвольной точке, то соединяющая эти точки прямая будет в одной и той же плоскости с параллельными." Докажите.

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Полезная информация:

Развитие моторики у дошкольников с общим недоразвитием речи
Задачи коррекционных занятий: 1. Сочетать игры и упражнения для тренировки пальцев с речью детей. 2. Сделать работу по совершенствованию пальчиковой моторики регулярной, выделив для неё специальное время. 3. Повысить у детей интерес к подобным упражнениям, превратив их в занимательную игру. 4. Учит ...

Методические рекомендации для социального педагога направленные на сплочение ученического коллектива
Базовая цель поведения ученика - чувствовать свою причастность к жизни школы - означает "чувствовать свою важность и значимость". Вот как понимает назначение школы Уильям Глассер: "Если личностные потребности детей не реализуются дома, они должны реализовываться в школе. Чтобы продол ...

Дифференцированный под­ход в обучении английско­му языку
Одной из наиболее актуальных проблем методики преподавания иностранных язы­ков в школе является дифференцированный подход в обучении. Нельзя назвать эту проблему новой, но, думается, далеко не полностью раскрыто все многообразие ее сторон, вся значимость ее при решении за­дач активизации процесса о ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru