Сопоставление результатов констатирующего и контрольного срезов

Образование и воспитание » Разработка модели обучения школьному курсу стереометрии на модульной основе » Сопоставление результатов констатирующего и контрольного срезов

Страница 8

Модуль 1. «Параллельность прямых и плоскостей в пространстве»

Цель:

усвоить понятия параллельности скрещивающихся прямых в пространстве; прямой, параллельной плоскости в пространстве; двух параллельных плоскостей в пространстве;

рассмотреть случаи взаимного расположения прямых, прямой и плоскости, двух плоскостей в пространстве;

ознакомиться с признаком скрещивающихся прямых, параллельности прямой и плоскости, параллельности двух прямых, параллельности двух плоскостей, теоремой о единственной прямой, проходящей через точку параллельно данной прямой, линии пересечения двух плоскостей третьей;

научиться применять теоретически положения при доказательстве определённых фактов решении практических заданий. Освоение данного модуля необходимо для более глубокого понимания темы и подготовки к восприятию следующего материала.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (рис.1). Условное обозначение: аúú b.

Определение. Прямые в пространстве могут не пересекаться, но лежать в разных плоскостях. В этом случае они называются скрещивающимися (рис.2).

Случаи взаимного расположения двух прямых в пространстве (схема I)

Схема I

Теорема. Через точку в пространстве, не принадлежащую данной прямой, проходит единственная прямая, параллельная данной прямой.

Доказательство: пусть точка А не принадлежит прямой b. Проведем через эту прямую и точку А плоскость α. Эта плоскость единственна. В плоскости α через точку А проходит единственная прямая – назовем её а, -параллельно прямой b. Она и будет искомой прямой, параллельной данной (рис.3).

Плоскость может быть задана следующими способами: тремя точками, не принадлежащими одной прямой; двумя пересекающимися прямыми; двумя параллельными прямыми.

Теорема (признак скрещивающихся прямых). Если одна прямая лежит в данной плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются.

Доказательство: пусть прямая а лежит в плоскости α, а прямая b пересекает плоскость α в точке В, не принадлежащей прямой а (рис.4). Если бы прямые а и b лежали в одной плоскости, то в этой плоскости лежали бы прямая а и точка В.

Страницы: 3 4 5 6 7 8 9 10 11 12 13

Полезная информация:

Формирование базовых компетенций в технологии проблемного обучения
Руководитель образовательной программы «Школа 2100» академик А.А. Леонтьев считает креативный принцип обучения самым важным. Главным, но не единственным путём реализации креативного принципа является проблемное обучение, которое обеспечивает творческое усвоение знаний. В результате психолого-педаго ...

Общение как средство обучения в процессе преподавания психологии
В условиях современного общества в процессе обучения активно применяются нетрадиционные методы обучения, которые необходимо осмыслить как инновационную педагогику. Изучение литературы показало, что проблема нетрадиционного обучения невербальными средствами является предметом исследования не только ...

Исследование трудовой мотивации школьников в условиях технологического образования
В настоящее время определены приоритеты дальнейшего развития Российского государства, что позволяет конкретизировать образовательные цели, в том числе и в сельском социуме, среди которых значимыми являются цели, ориентирующие на развитие адекватной трудовой мотивации школьников. С целью изучения мо ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru