Логические методы познания

Страница 3

Сравнение приводит к правильному выводу, если выполняются следующие условия:

1) сравниваемые понятия однородны и 2) сравнение осуществляется по таким признакам, которые имеют существенное значение.

Эти два условия выполняются в приведенных выше сравнениях: треугольник и четырехугольник – однородные понятия (многоугольники), обыкновенные и алгебраические дроби – выражения. Во всех трех случаях сравнение осуществлено по существенным признакам. Сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство (или новые свойства).

Рассуждение по аналогии имеет следующую общую схему:

А обладает свойствами А, В, С, D,

В обладает свойствами А, В, С,

Вероятно (возможно) В обладает и свойством D.

Как видим, заключение по аналогии является лишь вероятным (правдоподобным), а не достоверным. Поэтому аналогия, как правило, не является доказательным рассуждением, то есть рассуждением, которое может служить доказательством. («Как правило» потому, что имеется исключение, связанное с особым видом аналогии, о котором речь пойдет дальше.) Однако в обучении, как, впрочем, и в науке, аналогия часто полезна тем, что она наводит нас на догадки, то есть служит эвристическим методом. В обучении же математике не менее важно, чем учить доказывать, это учить догадываться, что именно подлежит доказательству и как найти это доказательство.

В приведенном выше разъяснении того, что такое аналогия, используется понятие «сходство», которое само нуждается в разъяснении. Когда говорят, например, о сходстве между людьми, между человеком и его изображением на фотоснимке или картине и т. п., интуитивно понимают, что означает сходство. Но можно ли в таком же смысле говорить, например, о сходстве между множеством учащихся класса и множеством А = {1,2,3, ., 30}, или между множеством точек прямой и множеством действительных чисел, или между множеством объектов на некотором участке и планом этого участка? Применение же аналогии в математическом исследовании, а поэтому и в обучении математике, часто характеризуется именно тем, что оно основано на глубоком, внутреннем «сходстве», а по существу на одинаковости структуры множеств предметов различной природы с отношениями, имеющими совершенно различный смысл, при отсутствии всякого внешнего «сходства» (в обычном смысле) между этими множествами. Это «структурное сходство», получившее точное математическое описание с помощью понятия изоморфизма, лежит в основе особого вида аналогии, приводящей в отличие от обычной аналогии к достоверным заключениям.

Например, в основе координатного метода лежит идея взаимно однозначного соответствия между множеством точек прямой (плоскости или пространства) и множеством действительных чисел (пар или троек чисел), переводящего некоторые отношения между точками в отношения между числами (парами или тройками чисел). Это взаимно однозначное соответствие является изоморфизмом, позволяющим осуществить однозначный перевод свойств с языка, описывающего структуру множества точек прямой (плоскости или пространства), на язык, описывающий структуру множества R, и обратно.

Страницы: 1 2 3 4 5 6 7 8

Полезная информация:

Основные понятия о дидактических принципах
Процесс обучения – это особый вид человеческой деятельности, это специфическая социально-педагогическая система, а любая система основывается на каких-то общих положениях, которые и называются принципами. Дидактические принципы являются определяющими при отборе содержания образования, при выборе ме ...

Клинико-психолого-педагогическая характеристика детей с умственной отсталостью
В странах Западной Европы и США термины «олигофрения», «имбецильность», «идиотия» практически не используются. Оксфордский словарь (1989) определяет олигофрению как «слабоумие» (термин, альтернативный термину «умственная отсталость») и раскрывает понятие так: «Пониженное общее интеллектуальное функ ...

Определение публицистического стиля
Публицистический стиль речи представляет собой функциональную разновидность литературного языка и широко применяется в различных сферах общественной жизни: в газетах и журналах, на телевидении и радио, в публичных политических выступлениях, в деятельности партий и общественных объединений. Сюда же ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru