Логические методы познания

Страница 3

Сравнение приводит к правильному выводу, если выполняются следующие условия:

1) сравниваемые понятия однородны и 2) сравнение осуществляется по таким признакам, которые имеют существенное значение.

Эти два условия выполняются в приведенных выше сравнениях: треугольник и четырехугольник – однородные понятия (многоугольники), обыкновенные и алгебраические дроби – выражения. Во всех трех случаях сравнение осуществлено по существенным признакам. Сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство (или новые свойства).

Рассуждение по аналогии имеет следующую общую схему:

А обладает свойствами А, В, С, D,

В обладает свойствами А, В, С,

Вероятно (возможно) В обладает и свойством D.

Как видим, заключение по аналогии является лишь вероятным (правдоподобным), а не достоверным. Поэтому аналогия, как правило, не является доказательным рассуждением, то есть рассуждением, которое может служить доказательством. («Как правило» потому, что имеется исключение, связанное с особым видом аналогии, о котором речь пойдет дальше.) Однако в обучении, как, впрочем, и в науке, аналогия часто полезна тем, что она наводит нас на догадки, то есть служит эвристическим методом. В обучении же математике не менее важно, чем учить доказывать, это учить догадываться, что именно подлежит доказательству и как найти это доказательство.

В приведенном выше разъяснении того, что такое аналогия, используется понятие «сходство», которое само нуждается в разъяснении. Когда говорят, например, о сходстве между людьми, между человеком и его изображением на фотоснимке или картине и т. п., интуитивно понимают, что означает сходство. Но можно ли в таком же смысле говорить, например, о сходстве между множеством учащихся класса и множеством А = {1,2,3, ., 30}, или между множеством точек прямой и множеством действительных чисел, или между множеством объектов на некотором участке и планом этого участка? Применение же аналогии в математическом исследовании, а поэтому и в обучении математике, часто характеризуется именно тем, что оно основано на глубоком, внутреннем «сходстве», а по существу на одинаковости структуры множеств предметов различной природы с отношениями, имеющими совершенно различный смысл, при отсутствии всякого внешнего «сходства» (в обычном смысле) между этими множествами. Это «структурное сходство», получившее точное математическое описание с помощью понятия изоморфизма, лежит в основе особого вида аналогии, приводящей в отличие от обычной аналогии к достоверным заключениям.

Например, в основе координатного метода лежит идея взаимно однозначного соответствия между множеством точек прямой (плоскости или пространства) и множеством действительных чисел (пар или троек чисел), переводящего некоторые отношения между точками в отношения между числами (парами или тройками чисел). Это взаимно однозначное соответствие является изоморфизмом, позволяющим осуществить однозначный перевод свойств с языка, описывающего структуру множества точек прямой (плоскости или пространства), на язык, описывающий структуру множества R, и обратно.

Страницы: 1 2 3 4 5 6 7 8

Полезная информация:

Индивидуальная работа с детьми с задержкой психического развития на занятиях кружка
Индивидуальная работа учащихся осуществляется по специальному плану учителя или воспитателя. По рекомендации воспитателя дети могут сами изготовлять поделки. Перед началом работы воспитатель проводит вводную беседу, рассказывая о целях и задачах предстоящего трудового задания. Дети в общих чертах п ...

Методика проведения дыхательной гимнастики по Стрельниковой А.Н. с детьми дошкольного возраста
Дыхательной гимнастикой по Стрельниковой А.Н. можно заниматься как индивидуально, так и с группой детей, причем в разное время дня и в любом месте. В детском саду можно использовать время разных режимных моментов исключая 20 минут до еды и 1 час после еды[30]. На прогулке дыхательная гимнастика про ...

Особенности работы с детьми музеев
На данный момент в Пермской области и г. Перми функционирует 140 музеев, из них 47 в областном центре и 53 в области [9, с.4]. Кроме того, зарегистрировано 179 школьных музеев, созданных при непосредственном участии детей. Организация работы с детьми признается одним из приоритетных направлений в с ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru