О роли и месте величин, их измерений в процессе обучения

Страница 4

одна фигура заменяется другой, которая ей равновелика и более удобна для решения задачи;

отношение отрезков заменяется отношением площадей треугольников с общей вершиной (если они известны), основаниями которых являются рассматриваемые отрезки.

Данный метод и его разновидности используются и для доказательства свойств геометрических фигур (например, таким методом доказывается свойство биссектрисы угла). Как и при использовании этого метода, так и других, используют дополнительные построения и общие методы доказательства теорем.

В процессе обучения геометрии, можно выделить некоторые конкретные направления использования измерений.

Понятие величины в математике возникло в результате абстрагирования от качественных особенностей свойств реальных объектов, чтобы выделить только количественные отношения. Еще в глубокой древности в процессе измерений было найдено множество эмпирических фактов об общих свойствах величин, которые являются отражением свойств в реальном мире.

Иногда считают, что понятие величины не является специальным математическим понятием, так как в конечном итоге, как правило, обращаются с числовыми значениями величин или просто числами. Однако, как указывал академик А.Н. Колмогоров, " .более радикальным и правильным решением представляется вполне традиционный путь, восходящий к Евклиду: общие свойства скалярных величин предпосылаются систематическому курсу геометрии. "

Понятие величины не потеряло своего значения в математике и в настоящее время; оно имеет ясно выраженную прикладную направленность. Так, Н.Я. Виленкин замечает: "Понятие величины является основным, когда речь идет о приложениях математики". Современная математика, давая общее представление о величине, отличает это понятие от понятия числа.

Между различными свойствами объектов и явлений окружающей действительности существуют определенные связи, часть из которых отражается в зависимостях между соответствующими величинами.

Изучение зависимостей между величинами позволяет учащимся видеть не только качественные связи различных сторон объективной реальности, т.е. на описательном уровне, но и оценивать их количественно.

Связи величин, их взаимозависимость выражаются с помощью формул. Истолкование формул в физике отличается от их истолкования в математике.

Математическая формула выражает в основном вид зависимости между символами, входящими в нее. Сами символы могут не содержать конкретного смысла. В физической формуле отражены связи между величинами реального мира.

В процессе изучения различных величин учащиеся должны знать не только их числовые характеристики, но и те свойства объектов, которые характеризуются данными величинами.

Известно, что не каждое свойство объектов, явлений можно измерять. Примерами могут служить многие понятия в психологии, педагогике, биологии, экономике (воля, смелость, вкус и т. д.). Иногда такие понятия также называют величинами, но в отличие от привычных - величинами латентными. Сравнение таких величин возможно лишь на некоторой интуитивной основе. Если говорят, что этот человек более волевой, чем другой, то о степени качества "воля" судят только через систему поступков, поведение человека. В этих случаях говорят об условных значениях величии или об условных мерах. Оценивать такие величины числами представляется искусственным.

Сложение, вычитание и другие арифметические действия с латентными величинами производить нельзя, так как не может быть установлено взаимно-однозначное соответствие между их множеством и множеством действительных чисел.

На примере использования величин в науках учащиеся знакомятся с одним из путей математизации знаний, с той ролью, которую играют математические методы в исследовании природы. Все это имеет важное значение для формирования у учащихся правильных представлений о взаимодействии математики с другими естественными науками.

Наряду с изучением конкретных величин в школе важно, чтобы учащиеся получили достаточно полное и в то же время доступное представление о:

понятии величины, способах ее измерения;

Страницы: 1 2 3 4 5

Полезная информация:

Значение сюжетного рисования в воспитании и развитии детей дошкольного возраста
Основная цель сюжетного рисования – научить ребенка передавать свои впечатления об окружающей действительности. Сюжетное рисование вводится не раннее чем в средней группе, причем в начале как изображение 2–3 предметов, расположенных рядом. Естественно, что детям должны быть известны приемы изображе ...

Детские и молодежные объединения
Параграф ставит своей целью охарактеризовать историю и современное состояние детских и молодежных организаций рассматриваемого региона. Предшественником пионерской организации в Перми стал детский клуб, организованный народным учителем В.И. Шулеповым на базе Центральной детской библиотеки. Клуб был ...

Профессиональная компетентность и педагогическое мастерство
Овладение педагогическим мастерством доступно каждому педагогу при условии целенаправленной работы над собой. Оно формируется на основе практического опыта. Но не любой опыт становится источником профессионального мастерства. Таким источником является только труд, осмысленный с точки зрения его сущ ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru