О роли и месте величин, их измерений в процессе обучения

Страница 4

одна фигура заменяется другой, которая ей равновелика и более удобна для решения задачи;

отношение отрезков заменяется отношением площадей треугольников с общей вершиной (если они известны), основаниями которых являются рассматриваемые отрезки.

Данный метод и его разновидности используются и для доказательства свойств геометрических фигур (например, таким методом доказывается свойство биссектрисы угла). Как и при использовании этого метода, так и других, используют дополнительные построения и общие методы доказательства теорем.

В процессе обучения геометрии, можно выделить некоторые конкретные направления использования измерений.

Понятие величины в математике возникло в результате абстрагирования от качественных особенностей свойств реальных объектов, чтобы выделить только количественные отношения. Еще в глубокой древности в процессе измерений было найдено множество эмпирических фактов об общих свойствах величин, которые являются отражением свойств в реальном мире.

Иногда считают, что понятие величины не является специальным математическим понятием, так как в конечном итоге, как правило, обращаются с числовыми значениями величин или просто числами. Однако, как указывал академик А.Н. Колмогоров, " .более радикальным и правильным решением представляется вполне традиционный путь, восходящий к Евклиду: общие свойства скалярных величин предпосылаются систематическому курсу геометрии. "

Понятие величины не потеряло своего значения в математике и в настоящее время; оно имеет ясно выраженную прикладную направленность. Так, Н.Я. Виленкин замечает: "Понятие величины является основным, когда речь идет о приложениях математики". Современная математика, давая общее представление о величине, отличает это понятие от понятия числа.

Между различными свойствами объектов и явлений окружающей действительности существуют определенные связи, часть из которых отражается в зависимостях между соответствующими величинами.

Изучение зависимостей между величинами позволяет учащимся видеть не только качественные связи различных сторон объективной реальности, т.е. на описательном уровне, но и оценивать их количественно.

Связи величин, их взаимозависимость выражаются с помощью формул. Истолкование формул в физике отличается от их истолкования в математике.

Математическая формула выражает в основном вид зависимости между символами, входящими в нее. Сами символы могут не содержать конкретного смысла. В физической формуле отражены связи между величинами реального мира.

В процессе изучения различных величин учащиеся должны знать не только их числовые характеристики, но и те свойства объектов, которые характеризуются данными величинами.

Известно, что не каждое свойство объектов, явлений можно измерять. Примерами могут служить многие понятия в психологии, педагогике, биологии, экономике (воля, смелость, вкус и т. д.). Иногда такие понятия также называют величинами, но в отличие от привычных - величинами латентными. Сравнение таких величин возможно лишь на некоторой интуитивной основе. Если говорят, что этот человек более волевой, чем другой, то о степени качества "воля" судят только через систему поступков, поведение человека. В этих случаях говорят об условных значениях величии или об условных мерах. Оценивать такие величины числами представляется искусственным.

Сложение, вычитание и другие арифметические действия с латентными величинами производить нельзя, так как не может быть установлено взаимно-однозначное соответствие между их множеством и множеством действительных чисел.

На примере использования величин в науках учащиеся знакомятся с одним из путей математизации знаний, с той ролью, которую играют математические методы в исследовании природы. Все это имеет важное значение для формирования у учащихся правильных представлений о взаимодействии математики с другими естественными науками.

Наряду с изучением конкретных величин в школе важно, чтобы учащиеся получили достаточно полное и в то же время доступное представление о:

понятии величины, способах ее измерения;

Страницы: 1 2 3 4 5

Полезная информация:

Понятие преобразования
Изложение теории геометрических преобразований начнём с общих определений. Определение. Отображением f множества X в множество Y называется такое соответствие, при котором каждому элементу x множества X соответствует вполне определённый элемент y множества Y. Oобозначение.f: X Y Элемент y называетс ...

Значимость довузовской подготовки
Значимость эффективной организации довузовской подготовки все больше осознается специалистами в различных областях образовательной деятельности. Довузовская подготовка – целенаправленный процесс воспитания и обучения посредством реализации дополнительных образовательных программ, оказания дополните ...

Деловая игра «Контракт с руководителем»
Цель деловой игры – приобретение навыков подбора и выдвижения на руководящую должность в условиях, максимально имитирующих производственную обстановку. В процессе игры обучающиеся приобретают навыки анализа производственных ситуаций, умения дискутировать и определять необходимые качества кандидатов ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru