О роли и месте величин, их измерений в процессе обучения

Страница 3

Ниже рассматриваются методы установления такой зависимости, называемые методами косвенного измерения геометрических величин.

1)Метод равновеликости равносоставленных фигур, используемый для определения геометрических величин многоугольников и многогранников, основан на 3-й и 4-й аксиомах (конкретизируемых как свойства площадей и объемов) и следующей из них теореме: равносоставленные фигуры равновелики (две фигуры называются равновеликими, если их площади или объемы равны; две фигуры называются равносоставленными, если каждую из них можно разбить на соответственно равные части). Для многоугольников, в частности, справедлива и обратная теорема: равновеликие многоугольники всегда равносоставлены.

Примерами применения этого метода являются доказательства формул площади параллелограмма (преобразованного в прямоугольник), трапеции (достроенного до треугольника), формул объема призмы; геометрическая иллюстрация законов действий над числами и формул тождественных преобразований (последние, в частности могут быть использованы для вывода формулы площади прямоугольника на основе известной формулы площади квадрата).

2) Метод предельного перехода основан на определении геометрических величин некоторых фигур, которые не могут быть определены и измерены непосредственно (длина окружности или дуги) или составлены из многоугольников (площадь круга) или многогранников (площади боковой поверхности и объемы круглых тел) как предела последовательности соответствующих значений геометрических величин, вписанных в данную фигуру или описанных около нее фигур при неограниченном увеличении числа определяющих их элементов (например, сторон многоугольников).

Впервые этот метод применяется для определения длины окружности и формулы ее вычисления. Рассуждения выстраиваются следующим образом: так как единицей измерения длины (единичный отрезок) не совмещается с дугой окружности, можно вначале измерить длину окружности приближенно, например, как периметр вписанного (или описанного) в нее многоугольника. Чтобы увеличить точность приближенного вычисления, увеличивают (например, удвоением) число сторон многоугольника и вычисляют его периметр; теоретически этот процесс можно продолжить бесконечно. Таким образом, получается бесконечная последовательность длин периметров, вписанных в окружность многоугольников Р1, Р2, Р3,…,Рп , которая при п→∞ возрастает и ограничена сверху (например, периметром любого описанного многоугольника) и, следовательно, по теореме К. Вейерштрасса имеет предел. Этот предел называется длиной окружности и его вычисление приводит к формуле C=2πr. Аналогичные рассуждения можно провести для определения и вывода формулы площади круга, боковой поверхности и объема цилиндра, конуса, усеченного конуса.

3) Метод интегрального исчисления для вычисления площадей фигур, ограниченных сверху и снизу графиками непрерывных неотрицательных функций и объемов круглых тел основан на теоремах математического анализа о вычислении площади криволинейной трапеции и объема тела вращения по формулам и .

Примером непосредственного применения метода интегрального исчисления является вывод формулы для вычисления объема пирамиды в 11 классе.

Одна и та же фигура может иметь несколько разных формул для вычисления ее площади (объема) для разных частных случаев (так, например, известно около десятка формул площади треугольника). На формулах вычисления площадей и объемов геометрических фигур основан метод площадей (и объемов) для вычисления длин отрезков или величин углов.

Суть метода площадей (объемов):

1)запишите две или более формул площади (объема) данной фигуры, в одной из них известны все элементы, а в другую входит неизвестный элемент (элементы);

2)составьте уравнение (систему уравнений) на основе того, что эти формулы выражают одну и ту же величину;

3)решите полученное уравнение (систему уравнений) и найдите искомые элементы.

Разновидности метода площадей (объемов):

Страницы: 1 2 3 4 5

Полезная информация:

Взаимоотношения отца и дочери
В жизни дочери папа – это первый мужчина, которого она встречает в своей жизни, долгое время она считает его единственным. От того, как сложится отношение отца и дочери, впервые 5–7 лет, зависит, кем будут для неё мужчины во взрослой жизни. Сможет ли она доверять им, рассчитывать на их помощь, смож ...

Организация кружковой деятельности
Технические кружки создают на сравнительно длительное время в расчете на регулярные занятия с постоянным составом учащихся. Каждый кружок должен иметь программу и календарно-тематический план работы. Организовать работу многих кружков в одной и той же школе весьма сложно: не хватает квалифицированн ...

Методы выборочного обследования
Чтобы прийти к обоснованным выводам о совокупности на основе выборки, исследователь должен обеспечить ее репрезентативность в отношении изучаемой совокупности. Если выборка извлечена из совокупности неверно, или, как говорят, смещена, то есть не является типичной для совокупности, то сделать на ее ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru