Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Образование и воспитание » Использование методов научного познания при изучении темы "Четырехугольники" » Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Страница 4

Последний частный вид параллелограмма – квадрат. Здесь говорится, что квадрат является прямоугольником и ромбом одновременно, следовательно, его диагонали взаимно перпендикулярны и равны.

В последнем пункте данного параграфа речь идет о характерных свойствах фигур. Дается определение характерного свойства. Приводится пример характерных свойств параллелограмма, прямоугольника и ромба.

В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.

Изучение четырехугольников идет по следующей теме:

2.1.4 «Геометрия, 7-9», авт. И. М. Смирнова, В. А. Смирнов

Тема «Четырехугольники» изучается в восьмом классе в главе «Параллельность».

В первом параграфе рассматриваются параллельные прямые. Дается определение параллельных прямых, секущей. Определяются соответственные, внутренние накрест лежащие и внутренние односторонние углы. Доказывается признак параллельности двух прямых, и рассматриваются три следствия данной теоремы. Также доказывается теорема о равенстве внутренних накрест лежащих углов.

Следующий параграф посвящен сумме углов многоугольника. Сначала доказывается, что сумма углов треугольника равна 1800, а затем переходят к доказательству общего случая.

В третьем параграфе рассматривают параллелограмм. Дается определение параллелограмма, доказывается три его свойства. Рассмотрен пример на применение свойств параллелограмма. На признаки параллелограмма отводится четвертый параграф, в котором доказываются первый и второй признаки параллелограмма. Приведено два примера на применение данных признаков.

В пятом параграфе рассмотрены прямоугольник, ромб и квадрат. Прямоугольник и ромб определяются через параллелограмм. Авторы отмечают, что прямоугольник является частным случаем параллелограмма. Поэтому он обладает всеми свойствами параллелограмма и приводят доказательство признака прямоугольника (если в параллелограмме диагонали равны, то это прямоугольник).

Ромб также является параллелограммом, следовательно, он обладает всеми его свойствами. Приводится доказательство признака ромба (если в параллелограмме диагонали перпендикулярны, то это ромб).

Квадрат определяется через прямоугольник. Авторы отмечают, что квадрат также является ромбом, у которого все углы прямые. На основании этого следует, что квадрат обладает всеми свойствами прямоугольника и ромба.

Перед изучением трапеции авторы рассматривают теорему о средней линии треугольника. Дают определение средней линии треугольника и приводят доказательство теоремы. Этот шаг оправдан, так как при доказательстве теоремы о средней линии трапеции используется теорема о средней линии треугольника. Определение трапеции такое же, как и в других учебниках. Трапецией называется четырехугольник, у которого две стороны параллельны. Дается определение равнобокой, прямоугольной трапеций, средней линии трапеции. Приводится доказательство теоремы о средней линии трапеции и рассматривается следствие из данной теоремы.

В конце главы приводится доказательство теоремы Фалеса, которая является обобщением теорем о средней линии треугольника и трапеции. В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.

Изучение четырехугольников в учебнике И. В. Смирнова, В. А. Смирнов идет по следующей схеме:

Страницы: 1 2 3 4 5

Полезная информация:

Особенности подросткового возраста
Поскольку переход в среднюю школу сопровождается началом подросткового возраста, а именно подросткового кризиса, то, для того чтобы подготовить ребенка к средней школе, необходимо рассмотреть особенности развития в подростковом возрасте, и выделить те трудности, которые возникают у ребенка в этом в ...

Кабинетная система в образовательном процессе. Оборудование кабинета иностранного языка
При обучении иностранному языку в школе главной целью является неподготовленная устная речь. Школьников нужно научить использовать усвоенный языковой материал для выражения своих мыслей в соответствии с речевой ситуацией. В методике обучения устной речи значительное место занимает проблема отбора и ...

Классификация национальных подвижных игр направленных на развитие двигательных качеств
Народные подвижные игры классифицируются с точка зрения их прикладности в практической деятельности. Немалое число народных подвижных игр носит прикладной характер, чаще всего обусловливающий характерными национально-традиционными чертами образа жизни народа, а отдельные из них уже признаны в качес ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru