Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Образование и воспитание » Использование методов научного познания при изучении темы "Четырехугольники" » Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Страница 3

Тема «Четырехугольники» изучается в восьмом классе в главе «Площади многоугольных фигур».

В первом параграфе рассказывается о многоугольниках и многоугольных фигурах. В первом пункте данного параграфа дается определение ломанной, рассматриваются различные особенности ломанной (замкнутая, пересекающая сама себя, косающая сама себя, простая ).

Следующие два пункта рассказывают о многоугольниках. Дается определение многоугольника, его сторон, вершин, диагоналей. Рассматривают выпуклые и невыпуклые многоугольники. Автор отмечает, что из всех многоугольников самые важные – выпуклые. Далее на примерах показывают, что любой треугольник является выпуклым многоугольником, а для четырехугольника это уже не всегда так. Также рассматривают свойства выпуклого многоугольника. Автор указывает наглядно очевидные свойства.

В пункте 1.4, который называется «Четырехугольники», автор рассказывает, что у четырехугольника 4 вершины, 4 угла, 4 стороны. Как принято обозначать четырехугольник. Рассказывает, какие стороны называются смежными, какие противоположными. Какие вершины являются соседними и противоположными. Также рассказывает про диагонали четырехугольника и автор напоминает, что сумма углов любого четырехугольника равна 3600.

Пункт 1.5 посвящен многоугольным фигурам. Дается определение многоугольной фигуры. Приводится пример многоугольных фигур составленных из многоугольников, не имеющих общих точек и имеющие только отдельные общие точки на границе. Также рассматриваются не пересекающиеся многоугольные фигуры, и дается определение составленной фигуры из многоугольных фигур.

Второй параграф посвящен площади многоугольных фигур. Дается определение площади многоугольной фигуры. Отмечается, что фигуры, имеющие равные площади называются равновеликими.

Далее переходят к измерению площади. Измерение площади определяется как сравнение площади данной фигуры с площадью фигуры принятой за единицу измерения. В конце параграфа рассматривается площадь прямоугольника, приводится доказательство, что величина a*b удовлетворяет любому прямоугольнику.

В третьем параграфе рассказывается о площади треугольника и трапеции. Трапеция определяется как четырехугольник, у которого одна пара параллельных сторон. Эти стороны называются основанием, а две другие боковыми. Дается определение равнобедренной (или равнобокой) трапеции. В конце параграфа доказывается теорема о средней линии трапеции. Автор отмечает, что треугольник можно считать вырожденной трапецией, когда одно из оснований становится точкой.

Последний параграф данной главы называется «Параллелограмм и его площадь». В первом пункте данного параграфа дается определение параллелограмма. Свойства параллелограмма рассматриваются в виде теоремы.

В пункте 4.2 доказывается теорема о признаках параллелограмма. Далее дается определение высоты параллелограмма и доказывается теорема о площади параллелограмма. Следующий пункт посвящен частным видам параллелограмма.

Первым частным видом параллелограмма является прямоугольник. Говорится, что прямоугольник является параллелограммом и доказывается важное свойство прямоугольника (в прямоугольнике диагонали равны) и признак прямоугольника (параллелограмм диагонали которого равны, является прямоугольником).

Вторым частым видом параллелограмма является ромб. Ромб определяется как четырехугольник, все стороны которого равны. Отмечается, что ромб является параллелограммом по признаку последнего (четырехугольник, имеющий две пары равных противоположных сторон является параллелограммом). Приводится доказательство свойства ромба и предлагается самостоятельно доказать два признака ромба.

Страницы: 1 2 3 4 5

Полезная информация:

Психолого-педагогические основы содержания и технологий современного урока литературы
Среди многих гуманитарных предметов, включенных в программу, особое место занимает литература. Художественное произведение представляет собой некоторую знаковую модель, в которой зафиксирован его герой (человек или антропоморфизированный объект): его характер, душевные переживания, страсти, ум, вол ...

Психологическая служба в системе образования
В некоторых странах СНГ, Великобритании, Бельгии, Голландии, Югославии, Чехословакии, Франции практическая психология занимает главное место в системе образования. В Казахстане она только крепнет и нуждается четком определении приоритетных задач исследований. Многие негативные явления современной ш ...

Становление и развитие информационной культуры личности
Человечество вступило в этап истории, одной из главных примет которого являются перемены. Эти перемены коренным образом отличаются от тех, что происходили в прошлом. Им свойственны: непрерывность, стремительность, тенденция к ускорению, глобальный характер. Они касаются всей планеты и практически в ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru