Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Образование и воспитание » Использование методов научного познания при изучении темы "Четырехугольники" » Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы

Страница 2

В последних пунктах параграфа (п.п. 60 – 61) доказывается теорема о пропорциональных отрезках и рассказывается, как построить четвертый пропорциональный отрезок.

Таким образом, изучение четырехугольников идет по следующей схеме:

2.1.2 «Геометрия, 7-9», авт. Л. С. Атанасян

Тема «четырехугольники» изучается в начале восьмого класса. На её изучение отводится целая глава. Первый параграф данной главы посвящен многоугольникам. Дается определение многоугольника (п. 39), а также что называют вершинами и сторонами многоугольника. Говорится, что называется n-угольником. Приводятся примеры фигур, которые являются многоугольниками и тех, которые не являются многоугольниками. Дается определение соседних вершин и диагоналей многоугольника. В конце данного пункта говорит о том, что любой многоугольник разделяет плоскость на две части (внутренняя и внешняя область многоугольника).

В следующем пункте первого параграфа (п. 40) автор рассказывает о выпуклых многоугольниках. Приводит пример выпуклого и невыпуклого многоугольника. Рассматривая выпуклый n-угольником A1A2A3…An-1AnA1 автор говорит, что углы AnA1A2, A1A2A3, …, An-1AnA1 называются углами этого многоугольника и показывает чему равняется сумма углов выпуклого n-угольника.

Последний пункт данного параграфа (п. 41) посвящен четырехугольнику. Автор не дает определения четырехугольника, он просто говорит, что четырехугольник имеет четыре вершины, четыре стороны и две диагонали. Дает определение противоположных сторон и вершин. Приводит пример выпуклого и невыпуклого четырехугольника. На основании суммы углов выпуклого n-угольника делается вывод, что сумма углов выпуклого четырехугольника равна 360º.

Второй параграф посвящен параллелограмму и трапеции. При изучении параллелограмма (п. 42) дается его определение, и доказываются его свойства. Л. С. Атанасян предлагает другой способ доказательства свойств параллелограмма по сравнению с учебником. Данные доказательства являются меньшими по объему и легче усваиваются учениками.

В следующем пункте параграфа (п. 43) рассказывается о признаках параллелограмма. В отличие от А. В. Погорелова Л. С. Атанасян рассматривает три признака параллелограмма. Это позволяет быстрее решать задачи на доказательство.

Последний пункт параграфа (п. 44) отводится трапеции. В этом пункте дается определение трапеции и рассматриваются виды трапеции. В этом учебнике также предлагается для изучения теорема Фалеса, но в явном виде она не выделена отдельным пунктом (по сравнению с учебником ).

Третий параграф посвящен прямоугольнику, ромбу и квадрату. Определение прямоугольника и ромба даются на основе параллелограмма (аналогично с учебником ). Так как прямоугольник и ромб являются параллелограммом, то они обладают всеми свойствами параллелограмма (этот факт не оговаривается в учебнике). Также в учебнике рассматривается особые свойства прямоугольника и ромба. Определение и свойство квадрата рассматриваются подобно, что и в учебнике, добавляются особые свойства квадрата.

В конце параграфа отдельным пунктом (п. 47) выделена осевая и центральная симметрия. В конце главы предлагаются задачи на отработку ЗУН.

Изучение четырехугольников в учебнике Л. С. Атанасяна идет по следующей схеме:

2.1.3 «Геометрия, 8-9», авт. А. Д. Александров

Страницы: 1 2 3 4 5

Полезная информация:

Характеристика групп исследуемых детей с ДЦП
Государственное учреждение здравоохранения «Детский психоневрологический санаторий для лечения ДЦП «Автозаводский» рассчитан на 100 коек круглосуточного пребывания детей и 50 коек дневного пребывания с учетом с учетом открытия филиала в здании, переданном распоряжением главы администрации города Ни ...

Защита прав особая проблема государства и общества в целом
Главной задачей правового образования является обеспечение каждому ребёнку оптимальных условий развития индивидуальных способностей, возможности самореализации вне зависимости от его психофизических особенностей, индивидуальных различий, иными словами защита прав ребёнка на любом этапе его развития ...

Методы изучения движений
При преподавании важно учитывать методы изучения движений. В методах изучения движений различают три этапа: этап ознакомительного начального разучивания; этап углубленного разучивания и переход к стадии совершенствования; этап совершенствования, упрочнения навыка, формирования умений оптимального и ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru