Методика изучения объемов фигур в курсе геометрии средней школы

Образование и воспитание » Методика изучения геометрических величин в курсе геометрии средней школы » Методика изучения объемов фигур в курсе геометрии средней школы

Страница 1

В изучении темы «Объемы тел» в курсе стереометрии прослеживается аналогия с темой «Площади фигур» и распределение учебного материала такое: простое тело – объем тела как величина – объем прямоугольного параллелепипеда – объем треугольной призмы – объем призмы – тела, имеющие равные объемы – объем полной треугольной пирамиды – объем произвольной полной пирамиды – объем усеченной треугольной пирамиды – объем произвольной усеченной пирамиды – объемы подобных тел – объем тел вращения.

Существуют различные методические подходы к изучению вопросов измерения геометрических величин в курсе стереометрии.

Принципиальные трудности, возникающие при изучении объемов, носят тот же характер, что и при изучении площадей, но имеют определенную специфику. Так, если при измерении площадей непосредственное сравнение площади конкретной фигуры с единицей площади вызывало затруднения, но все же было возможным, то для измерения объемов сравнение с единичным кубом практически вообще невозможно, ему на смену всегда приходит измерение косвенное. В то же время такой момент, как необходимость ввести новое определение понятия объема для фигур вращения, уже не вызывает у учащихся недоумения, так как этот новый подход уже применялся при вычислении площадей.

Для вывода формулы объема, могут быть использованы:

Принцип Кавальери: объемы (или площади) двух тел (фигур) равны, если равны между собой площади (длины) соответствующих сечений, проведенных параллельно некоторой данной плоскости (прямой).

Формула Симпсона:

.

Пусть промежуток [a,b] разбит на n частейных промежутков [xi, xi+1] длины , при этом n считается чётным числом, и для вычисления интеграла по промежутку [x2k, x2k+2] используется приведенная формула:

.

Принципиальным моментом в теории объемов тел является обоснование формулы для учащихся является достаточно трудным и сложным. Структурная сложность доказательства подсказывает, что при его изучении целесообразно воспользоваться приёмами выделения логической структуры доказательства (разбиения доказательства на отдельные шаги, составление логико-структурной схемы доказательства и т.д.). Наличие в доказательстве трудных для понимания рассуждений говорит о целесообразности использования приёмов конкретизации, моделирования и т.д.

Структура доказательства формулы объёма прямоугольного параллелепипеда:

устанавливается величина отношения высот двух параллелепипедов с общим основанием;

устанавливается величина отношения объёмов выбранных параллелепипедов;

сравнение полученных значений отношений;

вывод формулы объёма прямоугольного параллелепипеда, применяя доказанное свойство к единичному кубу и параллелепипедам с измерениями: a,1,1; a,b,1; a,b,c.

При решении задач учащиеся иногда “путают” свойства прямого и прямоугольного параллелепипедов, неправильно указывают их диагональное сечение и т.п. Более углубленное изучение этих понятий на этапе их введения обеспечивает применявшаяся ранее методическая схема:

проанализировать эмпирический материал;

математизировать эмпирический материал – построить определение;

составить алгоритм распознавания понятия;

включить понятие в систему понятий.

При выводе формулы объема цилиндра применяется предельный переход. Затем, при выводе формул для вычисления объема пирамиды, ученики используют метод интегрального исчисления. Нужно отметить, что с этим методом ученики знакомятся сначала в курсе математического анализа при вычислении площади криволинейной трапеции.

Старшеклассникам следует сообщить, что необходимость специального определения понятия объема для пирамиды и соответственно необходимость применения интегральных методов вызваны тем, что, оказывается, равновеликие многогранники далеко не всегда являются одновременно и равносоставленными.

В работе были решены все поставленные во введении задачи, а именно рассмотрена история развития геометрических величин, охарактеризовано понятие геометрической величины, установлена роль и место величин, их измерений в процессе обучения, описана методическая литература по данной теме.

Понятие геометрической величины – одна из основных линий школьного курса геометрии, которая знакомит учащихся с важными идеями, понятиями и методами метрической геометрии.

Страницы: 1 2

Полезная информация:

Логико-дидактический анализ темы «Подобные треугольники » по учебнику Атанасяна Л.С
Тема подобные треугольники в учебнике Атанасяна Л.С. вводиться в 8 классе и включает в себя четыре параграфа, каждый из которых делиться на пункты. §1. Определение подобных треугольников. §2. Признаки подобия треугольников. §3. Применение подобия к доказательству теорем и решению задач. §4. соотнош ...

Самооценка школьника и оценка ею родителями
Формирование самооценки может рассматриваться как результат усвоения ребенком особенностей отношения к нему родителей. Самоотношение ребенка до определенного периода является отражением отношения к нему взрослых, первым делом родителей. Вместе с тем по одному только характеру объективно сложившейся ...

Разработка проекта «Формирование системы информационного образования школьников МОУ «Сахарозаводская сош»
Проект Школа и библиотека есть альфа и омега образования» Доминго Ф. Сармиенто Проблема: Отсутствие системы информационного образования школьников. Определение: Информационная культура личности – одна из составляющих общей культуры человека; совокупность информационного мировоззрения и системы знан ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru