Особенности математических представлений детей с проблемами в интеллектуальном развитии

Образование и воспитание » Развитие математических представлений у дошкольников » Особенности математических представлений детей с проблемами в интеллектуальном развитии

Страница 2

М.С Певзнер доказала, что на уровне сложной аналитико-синтетической деятельности словесная система умственно отсталых детей теряет свою организующую функцию в процессе образования общих представлений и понятий.

По словам Ж.И Шиф, дети с интеллектуальной недостаточностью схематично и неконкретно решают задачи, требующие наглядно-образного мышления. Б.И. Пинский отмечает нарушение целенаправленности деятельности детей с интеллектуальным недоразвитием, которое выражается в том, что дети, как правило, приступают к выполнению задания без должной предварительной ориентировки в нем, без активной мыслительной работы над "планом". При возникновении затруднений они "уходят" в сторону от первоначально поставленной цели, производя действия далекие от необходимых. Нарушения и своеобразие сенсорного отражения действительности детьми с интеллектуальным недоразвитием оказываются связанными со сложными формами как практической, так и умственной деятельности. Обедненный чувственный опыт, который находит отражение в представлениях детей данной категории, недостаточен для формирования высших психических функций. В этой связи проблема формирования у них точных и обобщенных представлений приобретает первостепенное значение.

Особенности мышления сочетаются с нарушенной динамикой мыслительных процессов. Для детей характерна замедленность мышления. У некоторых из них отмечается недостаточная последовательность и целенаправленность мышления, иногда со склонностью к резонерству и побочным ассоциациям. У этих детей значительно выражены нарушения целенаправленной интеллектуальной деятельности, отмечается также недоразвитие внутренней речи.

У детей с интеллектуальной недостаточностью нет представления о цепи причин и следствий, которая существует в действительности. Они не умеют находить причину и следствие, например, в тексте, задаче, хотя часто достаточно хорошо пользуются знаниями причинной связи явлений. Значительное затруднение вызывает у них понимание условия и удержание в памяти словесного задания.

Для формирования математических представлений необходимы развитая познавательная активность, интерес, произвольность деятельности и самоконтроля. Детям дошкольного и младшего школьного возраста с интеллектуальной недостаточностью (с легкой умственной отсталостью и с задержкой психического развития) свойственны познавательная пассивность, связанная со снижением интереса, а также несформированные произвольная деятельность и самоконтроль. Отмечается отсутствие интереса к выполнению математических заданий, нецеленаправленность действий, низкий уровень самостоятельности, недостаточная критичность по отношению к результатам своей деятельности, слабое внимание к содержанию заданий.

Особенности количественных представлений и решения арифметических задач.

К ним можно отнести несформированность обратного счета в пределе 5, неумение называть итоговое число, большие трудности при установлении взаимно однозначного соответствия между множествами, отсутствие умения оперировать множествами. Дети часто не понимают задачу, не дают числового ответа или называют любое число, неверно пересчитывают количество предметов. Наиболее доступными являются задачи, в которых ответ можно найти путем "механического" пересчета. У большинства детей вызывают сложности решения задач с закрытым результатом, с использованием счетного материала для нахождения ответа. Как правило, они затрудняются в оформлении ответов, в подавляющем большинстве случаев опускают названия самих предметов, не умеют составлять задачи по наглядно представленной ситуации.

Исследования И.В. Чумаковой показали, что дети демонстрируют очень низкий уровень формирования количественных представлений: неосознанный механический счет в прямом порядке и отсутствие обратного счета; значительную зависимость счетной деятельности от качественных особенностей предметов и их пространственного расположения; несформированность обобщенных представлений о количестве; трудности в усвоении правил пересчета предметов, "безытоговый" счет; трудности в выполнении действий сложения и вычитания; отсутствие переноса имеющихся знаний в новые ситуации. Все это, в свою очередь, ведет к затруднениям при дальнейшем изучении математики во вспомогательной школе.

Страницы: 1 2 3

Полезная информация:

Закрепление и углубление материала на второй закон Ньютона
Для закрепления и углубления материала на второй закон Ньютона рассматривают главным образом тренировочные задачи, позволяющие усвоить формулу и единицы измерения входящих в нее величин. При решении задач нужно научить учащихся определять направление векторных величин, особенно ускорения. В соответ ...

Пути реализации межпредметных связей на уроках иностранного языка
Использование межпредметных связей - одна из наиболее сложных методических задач учителя иностранного языка. Она требует знаний содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя с учителями химии, физики, пос ...

Сущность понятия «милосердие»
Понятие «милосердие» вернулось к нам пройдя большой путь. В послереволюционный период оно считалось отжившим, включалось в некоторые словари русского литературного языка как нечто архаичное, требующее разъяснения. В словарях милосердие определяется как: «Сердолюбие, сочувствие, любовь на деле, гото ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru