Математические методы познания

Страница 1

Математическое моделирование

Большинство психологов под «моделью» понимают систему объектов или знаков, воспроизводящую некоторые существенные свойства системы-оригинала. Наличие отношения частичного подобия («гомоморфизм») позволяет использовать модель в качестве заместителя или представителя изучаемой системы.

Иногда под моделью понимают такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные черты.

Вот некоторые примеры моделей:

1) архитектор готовится построить здание невиданного доселе типа. Но прежде чем воздвигнуть его, он сооружает это здание из кубиков на столе, чтобы посмотреть, как оно будет выглядеть. Это модель.

2) на стене висит картина, изображающая бушующее море. Это модель.

«Моделирование – это есть процесс использования моделей (оригинала) для изучения тех или иных свойств оригинала (преобразования оригинала) или замещения оригинала моделями в процессе какой-либо деятельности» (например, для преобразования арифметического выражения можно его компоненты временно обозначить буквами).

Математическое моделирование – частный случай моделирования. Является важнейшим видом знакового моделирования и осуществляется средствами языка математики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математических, логических, химических формул и т. п.).

Понятия «математическая модель» и «моделирование» широко используются в науке и на производстве. Роль знаковых моделей особенно возросла с расширением масштабов применения ЭВМ при построении знаковых моделей. Современная форма «материальной реализации» знакового (прежде всего, математического) моделирования – это моделирование на цифровых электронных вычислительных машинах, универсальных и специализированных.

Математическое моделирование предполагает использование в качестве специфического средства исследования оригинала его математическую модель, изучение которой дает новую информацию об объекте познания, его закономерностях (Н. П. Бусленко, Б. А. Глинский, Б. В. Гнеденко, Л. Д. Кудрявцев, И. Б. Новик, Г. И. Рузавин, К. А. Рыбников, В. А. Штофф). Предметом исследования при математическом моделировании является система «оригинал – математическая модель», где системообразующей связью выступает изоморфизм структур оригинала и модели. Структура служит инвариантным аспектом системы, раскрывающим механизм ее функционирования (Н.Ф. Овчинников).

Известно, что для математического исследования процессов и явлений, реально происходящих в действительности, надо суметь описать их на языке математики, то есть построить математическую модель процесса, явления. Математические модели и являются объектами непосредственного математического исследования.

Математической моделью называют описание какого-либо реального процесса или некоторой исследуемой ситуации на языке математических понятий, формул и отношений.

Математическая модель – это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. Математическая модель, основанная на некотором упрощении, идеализации, не тождественна объекту, а является его приближенным отражением. Однако благодаря замене реального объекта соответствующей ему моделью появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом, который не зависит от конкретной природы объекта.

Страницы: 1 2 3

Полезная информация:

Технология деятельности по созданию условий для формирования у детей готовности к переходу в среднюю школу
Способом преодоления выделенных нами трудностей является педагогически организованная ведущая деятельность подросткового возраста. Основная идея заключается в том, что для того, чтобы подготовить ребенка к средней школе, необходимо создавать условия, в которых каждый ребенок получает возможность ре ...

Возрастные особенности и механизмы речи в онтогенезе
При оценке нарушений у детей важно учитывать так называемые критические периоды, когда происходит наиболее интенсивное развитие тех или иных звеньев речевой системы, в связи с чем появляются повышенная ранимость нервных механизмов речевой деятельности и риск возникновения нарушений ее функции даже ...

Адаптация человека в обществе
Социальная адаптация является необходимым условием для обеспечения оптимальной социализации человека. Она позволяет человеку не просто проявлять себя, свое отношение к людям, деятельности, быть активным участником социальных процессов и явлений, но и благодаря этому обеспечивать свое естественное с ...

Категории

Copyright © 2022 - All Rights Reserved - www.oxoz.ru