Логические методы познания

Страница 10

Однако, как при индуктивном, так и при дедуктивном методах при изложении новых понятий или новых общих теорий необходимо значительное время отводить на конкретные иллюстрации, на разбор примеров, анализ частных ситуаций. В методике преподавания каждое высказывание в категорической форме легко можно довести до абсурда. От самого учителя зависит оптимальный выбор метода, позволяющего на высоком уровне самостоятельности организовать познавательную деятельность учащихся.

В математике используются различные виды индукции: полная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму n первых нечетных чисел: 1+ 3 + 5 + 7 + . + (2n - 1).

Обозначив эту сумму через S(n), положим n == 1, 2, 3. 4, 5; тогда будем иметь:

S(1)=1,

S (2)=1+3=4,

S(3)=1+3+5=9,

S(4)=1+3+5+7=16,

S(5)=1+3+5+7+9=25.

Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма n последовательных четных чисел равна n2. Но заключение по аналогии, что это имеет место при любом n, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, то есть предположим, что для какого-то числа n наша формула верна, и попытаемся доказать, что тогда она верна и для следующего числа n + 1. Итак, мы полагаем, что S (n) = 1 + 3 + 5 + . + (2n - 1) = n2.

Вычислим

S (п + 1) = 1+3+5 + .+(2n-1)+(2n+1).

Но по предположению, сумма п первых слагаемых равна п2, следовательно,

S (n + 1)= n2 + (2 п + 1) = (n + 1)2.

Итак, предположив, что S (п) = n2 , мы доказали, что S(n + 1) = (n + 1)2. Но выше мы проверили, что эта формула верна для п = 1, 2, 3, 4, 5, следовательно, она будет верна и для п = 6, и для п = 7 и т. д. Формула считается доказанной для любого числа слагаемых. Этот метод доказательства называется методом математической индукции.

Умозаключения делятся на логически необходимые и вероятностные (правдоподобные). Некоторые виды неполной индукции дают лишь вероятностные (или правдоподобные) заключения.

Единство дедукции и индукции, как в обучении, так и в научном творчестве своеобразно и ярко проявляется в математике – науке, значительно отличающейся от естественных и от общественных наук, как по методам доказательства, так и по методике передачи знаний учащимся.

Страницы: 5 6 7 8 9 10 

Полезная информация:

Разнообразие приемов и методов развития творческого потенциала по предмету «Технология»
Творчески активная деятельность в процессе обучения формирует у школьников ряд качеств, которые в конечном итоге положительно скажутся на характере ученика. Практика убеждает, что для формирования богатого внутреннего мира учащихся надо выбирать такие приемы и способы побуждения к активной творческ ...

Структура и этапы педагогического процесса
Структура педагогического процесса – это совокупность составляющих его частей, соответствующих компонентам педагогической системы. Компоненты педагогического процесса таковы: целевой – определение целей воспитания, обучения; содержательный – разработка содержания образования; операционно-деятельнос ...

Произвольная и непроизвольная память
В зависимости от целей деятельности память делят на непроизвольную и произвольную. Запоминание и воспроизведение, в котором отсутствует специальная цель что-то запомнить или припомнить, называется непроизвольной памятью. В тех случаях, когда мы ставим такую цель, говорят о произвольной памяти. В по ...

Категории

Copyright © 2022 - All Rights Reserved - www.oxoz.ru