Логические методы познания

Страница 10

Однако, как при индуктивном, так и при дедуктивном методах при изложении новых понятий или новых общих теорий необходимо значительное время отводить на конкретные иллюстрации, на разбор примеров, анализ частных ситуаций. В методике преподавания каждое высказывание в категорической форме легко можно довести до абсурда. От самого учителя зависит оптимальный выбор метода, позволяющего на высоком уровне самостоятельности организовать познавательную деятельность учащихся.

В математике используются различные виды индукции: полная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму n первых нечетных чисел: 1+ 3 + 5 + 7 + . + (2n - 1).

Обозначив эту сумму через S(n), положим n == 1, 2, 3. 4, 5; тогда будем иметь:

S(1)=1,

S (2)=1+3=4,

S(3)=1+3+5=9,

S(4)=1+3+5+7=16,

S(5)=1+3+5+7+9=25.

Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма n последовательных четных чисел равна n2. Но заключение по аналогии, что это имеет место при любом n, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, то есть предположим, что для какого-то числа n наша формула верна, и попытаемся доказать, что тогда она верна и для следующего числа n + 1. Итак, мы полагаем, что S (n) = 1 + 3 + 5 + . + (2n - 1) = n2.

Вычислим

S (п + 1) = 1+3+5 + .+(2n-1)+(2n+1).

Но по предположению, сумма п первых слагаемых равна п2, следовательно,

S (n + 1)= n2 + (2 п + 1) = (n + 1)2.

Итак, предположив, что S (п) = n2 , мы доказали, что S(n + 1) = (n + 1)2. Но выше мы проверили, что эта формула верна для п = 1, 2, 3, 4, 5, следовательно, она будет верна и для п = 6, и для п = 7 и т. д. Формула считается доказанной для любого числа слагаемых. Этот метод доказательства называется методом математической индукции.

Умозаключения делятся на логически необходимые и вероятностные (правдоподобные). Некоторые виды неполной индукции дают лишь вероятностные (или правдоподобные) заключения.

Единство дедукции и индукции, как в обучении, так и в научном творчестве своеобразно и ярко проявляется в математике – науке, значительно отличающейся от естественных и от общественных наук, как по методам доказательства, так и по методике передачи знаний учащимся.

Страницы: 5 6 7 8 9 10 

Полезная информация:

Проект родительского собрания на тему: «Компьютеры: добро или зло в жизни ребенка»
Отличительной чертой времени, в котором мы живем, является стремительное проникновение информационных технологий во все сферы жизни. Нет сомнения, что современные дети способны с завидной легкостью овладеть навыками работы с различными электронными компьютерными новинками. Но главное, чтобы наши де ...

Развитие креативности младших школьников на уроках математики
«Творчество – это высшая и наиболее сложная форма человеческой деятельности, способ его самоутверждения, процесс самореализации творческой индивидуальности и непременное условие его самосовершенствования». Психологи отмечают, что творческие способности заложены и присутствуют в каждом ребенке, поск ...

Педагогические технологии в системе дистанционного образования
1.Проблема организации учебного процесса в дистанционной форме чрезвычайно актуальна. Ее актуальность обусловлена несколькими причинами. Прежде всего, упорным нежеланием подавляющего большинства организаторов обучения в дистанционной форме признать тот факт, что речь должна идти не только об исполь ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru