Логические методы познания

Страница 10

Однако, как при индуктивном, так и при дедуктивном методах при изложении новых понятий или новых общих теорий необходимо значительное время отводить на конкретные иллюстрации, на разбор примеров, анализ частных ситуаций. В методике преподавания каждое высказывание в категорической форме легко можно довести до абсурда. От самого учителя зависит оптимальный выбор метода, позволяющего на высоком уровне самостоятельности организовать познавательную деятельность учащихся.

В математике используются различные виды индукции: полная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму n первых нечетных чисел: 1+ 3 + 5 + 7 + . + (2n - 1).

Обозначив эту сумму через S(n), положим n == 1, 2, 3. 4, 5; тогда будем иметь:

S(1)=1,

S (2)=1+3=4,

S(3)=1+3+5=9,

S(4)=1+3+5+7=16,

S(5)=1+3+5+7+9=25.

Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма n последовательных четных чисел равна n2. Но заключение по аналогии, что это имеет место при любом n, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, то есть предположим, что для какого-то числа n наша формула верна, и попытаемся доказать, что тогда она верна и для следующего числа n + 1. Итак, мы полагаем, что S (n) = 1 + 3 + 5 + . + (2n - 1) = n2.

Вычислим

S (п + 1) = 1+3+5 + .+(2n-1)+(2n+1).

Но по предположению, сумма п первых слагаемых равна п2, следовательно,

S (n + 1)= n2 + (2 п + 1) = (n + 1)2.

Итак, предположив, что S (п) = n2 , мы доказали, что S(n + 1) = (n + 1)2. Но выше мы проверили, что эта формула верна для п = 1, 2, 3, 4, 5, следовательно, она будет верна и для п = 6, и для п = 7 и т. д. Формула считается доказанной для любого числа слагаемых. Этот метод доказательства называется методом математической индукции.

Умозаключения делятся на логически необходимые и вероятностные (правдоподобные). Некоторые виды неполной индукции дают лишь вероятностные (или правдоподобные) заключения.

Единство дедукции и индукции, как в обучении, так и в научном творчестве своеобразно и ярко проявляется в математике – науке, значительно отличающейся от естественных и от общественных наук, как по методам доказательства, так и по методике передачи знаний учащимся.

Страницы: 5 6 7 8 9 10 

Полезная информация:

Принцип единства требовательности и уважения к личности воспитанника
Требования этого принципа могут быть рассмот­рены и в структуре принципа гуманистическом целенаправленности воспитания: воспитание немыслимо без предъявления требо­ваний, но эти требования должны быть гуманными, предъявлять­ся к воспитаннику не только в интересах общества, но и в интересах самого в ...

Развитие речи у детей младшего дошкольного возраста с нарушениями интеллекта
У детей с нарушениями интеллекта развитие речи существенно отличается от того, которое описано выше. Отставание в развитии речи начинается у них с младенчества и продолжает накапливаться в раннем детстве. Соответственно, к переходу дошкольного возраста у них нет готовности к ее усвоению. Не сформир ...

Великие педагоги о труде: Макаренко, Ушинский, Сухомлинский, Крупская
Понимая огромную роль труда в воспитании подрастающего поколения, в своих работах часто затрагивали эту тему. И Великий Ушинский, и А C. Макаренко, В.A. Сухомлинский, Н.К. Крупская. Некоторые из их высказываний я приведу в своей работе. "Труд - первое основное условие всей человеческой жизни и ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru