Разработка занятий элективного курса «Квадратные уравнения и неравенства с параметром»

Образование и воспитание » Уравнения и неравенства с параметром как средство формирования исследовательских умений учащихся в 7–9 классах » Разработка занятий элективного курса «Квадратные уравнения и неравенства с параметром»

Страница 2

При решении задач с параметрами нужно иметь представление о множестве допустимых значений параметра. Если параметру, содержащемуся в уравнении (неравенстве) придать некоторое значение, то возможен один из двух случаев:

Получиться уравнение (неравенство), содержащее лишь данные числа и неизвестные и не содержащее параметров.

Получиться равенство (неравенство), одно (по крайней мере) из выражения не имеет смысла.

Говорят, что в первом случае значение параметра является допустимым, а во втором недопустимым.

Решить уравнение или неравенство с параметром – это значит, для каждого допустимого значения параметра найти множество всех решений данного уравнения или неравенства.

Решение задач

Рассмотрение примера решения задачи:

При каких значениях m ровно один из корней уравнения 3х2+х+2m-3=0 равен 0?

Учитель записывает решение на доске и поясняет каждый шаг.

Решение задач

- задания 1, 2: каждое задание один из учеников решает на доске, остальные – в тетради. После решения задания 2 ученик с помощью учителя записывает на доске условия, определяющие количество корней квадратного уравнения в зависимости от значения А(а).

- задание 3: учащимся дается время на самостоятельное выполнение задания. После того, как с заданием справилась треть класса, один из учеников, его выполнивших, записывает решение на доске.

Дополнительные задания:

- учащиеся, решающие «вперед», самостоятельно выполняют задания 4-7. В конце занятия производится устная проверка решения этих заданий: рассказывается идея и шаги решения.

Задания.

Основная часть:

1. При каких значениях m ровно один из корней уравнения равен 0: x2+(m+3)x+m-3=0 2. При каких значениях параметра р уравнение рх- х+3=0 имеет единственное решение?

При решении данного уравнения необходимо учесть, что может быть р=0. В этом случае уравнение также имеет единственное решение.

В общем случае условия существования единственного решения запишутся следующим образом:

или .

Если то уравнение не имеет корней.

Если то уравнение имеет бесконечно много решений.

При каких значениях параметра а уравнение ах-4х+а+3=0 имеет не более одного корня?

Дополнительные задания:

4. При каких значениях а корни уравнения 4х2+(5а-1)х+3а=-а равны по модулю, но противоположны по знаку?

Найдите все значения параметра k, при которых уравнение (k-2)x-2kx+2k-3=0 имеет хотя бы один корень?

Доказать, что при любом значении а уравнение х2+(а-2)х+(а-3)=0 имеет два корня.

При каких значениях параметра а уравнение имеет единственное решение?

4. Подведение итогов занятия:

- Интересными ли явились задания?

Страницы: 1 2 3 4 5 6 7

Полезная информация:

Формирование интонационной выразительности речи
1. Развитие восприятия различных видов интонации. Логопедическая работа проводится в определенной последовательности: 1. Общее знакомство с интонацией и средствами ее выражения (темп, ритм, высота и тон голоса, логическое ударение). 2. Развитие восприятия интонации повествовательного типа: а) знако ...

Понятие деятельности
Деятельность – это совокупность действий человека, направленных на удовлетворение его потребностей и интересов. Теория деятельности возникла еще в древности. Большой вклад в ее развитие внесли средневековые философы. Но подлинно философскую теорию деятельности создали немецкие классики – философы К ...

Утренняя гигиеническая гимнастика
Значение утренней гигиенической гимнастики как средства восстановления работоспособности после сна, а при систематических занятиях ею и как средства укрепления здоровья и работоспособности разносторонне изучено физиологами. Эффект утренней гимнастики связывается с повышением возбудимости нервной си ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru