Методика изучения длин в курсе геометрии средней школы

В традиционной школе изучение величин начинается с длины предметов.

Теория измерения длины отрезков может быть построена по такой схеме:

Определение длины отрезка как вещественного числа;

Описание процедуры измерения отрезка;

Установление существования и единственности длины отрезка при данном выборе единицы измерения с использованием аксиомы Архимеда;

Установления существования отрезка, длина которого при данном выборе единицы измерения равна любому, наперед заданному положительному числу(с использованием аксиомы Кантора, геометрического эквивалента аксиомы непрерывности).

Первые представления о длине, как о свойстве предметов, у детей возникает задолго до школы. С первых дней обучения в школе ставится задача уточнить пространственные понятия детей. Важным шагом в формировании данного понятия является знакомство с прямой линией и отрезком, как «носителем» линейной протяжённости, лишенным, по существу, других свойств.

Сначала учащиеся сравнивают предметы по длине, не измеряя их. Делают они это наложением (приложением) и визуально («на глаз»).Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: «Какой отрезок длиннее, красного или зеленого цвета?»

Затем предлагается сравнить два предмета разного цвета и разные по длине практически - наложением. Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: « Какой ремень короче (длиннее) светлый или тёмный?» Через эти два упражнения дети подводятся к пониманию длины как свойства, проявляющегося в сравнении, то есть: если два предмета при наложении совпадают, то они имеют одну и ту же длину; если же какой - либо из сравниваемых предметов накладывается на часть другого, не покрывая его полностью, то длина первого предмета меньше длины второго предмета. После рассмотрения длин предметов переходят к изучению длины отрезка. Здесь длина выступает как свойство отрезка.

Разъяснение учащимся старших классов сущности аксиомы Кантора не представляет особых трудностей.

Случай, когда на перед заданное число рационально, аксиома Кантора применяется, а используется элементарное построение. Если это число иррационально, например х=2,313113111311113…, то поступаем так: введем на прямой систему координат(начало 0, направления единицу измерения).Мы можем построить точки А1 и B1, где А1 = 2,3; B1 = 2,4 – приближения с точностью 0,1. Если существует точка М, то ОА1<OM<OB1, т.е. точка М лежит между А1 и B1, т. е. внутри отрезка А1 B1. Мы можем найти A2 = 2,31 и B2 = 2,32 и т.д.

Неограниченно продолжая этот процесс, мы получаем, что если точка М существует, то она лежит внутри каждого из отрезков бесконечной последовательности: A1B1, A2B2,…,AпBп,…, обладающей следующими свойствами:

Каждый отрезок, кроме первого, лежит внутри предыдущего.

Длины отрезков стремятся к 0(или нет отрезка, лежащего внутри всех отрезков этой последовательности).

Существование точки лежащей внутри всех отрезков этой последовательности, и постулируется аксиомой Кантора.

Приняв аксиому Кантора, мы находим искомую точку М, а следовательно и отрезок ОМ, длина которого равна наперед заданному числу х.

Полезная информация:

Место школьной библиотеки – медиатеки в информационном пространстве общеобразовательного учреждения
Библиотечный медиацентр в школьном едином информационном образовательном пространстве несёт нагрузку, связанную с общей каталогизацией, контролем за обращениями, созданием тематических списков дополнительной литературы, медиасредств, имеющихся в медиацентре и аннотированных ссылок на образовательны ...

Сущность символизации
Сообщение детям новых знаний, формирование более сложных умений позволяют педагогу подчеркивать значение занятий для развития познавательных интересов. Каждый вид занятий определенным образом влияет на развитие личности ребенка. Одним из наиболее перспективных методов реализации умственного воспита ...

История возникновения и причины наркомании
Может показаться, что наркотики появились не так давно, что связано с развитием химии, медицины и других наук, а также с быстрым научно-техническим прогрессом. Однако это не так. Наркотики знакомы людям уже несколько тысяч лет. Их потребляли люди разных культур и в разных целях: во время религиозны ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru