Методика решения количественных задач

Страница 1

Решение сложных количественных задач на уроке складывается обычно из следующих элементов: чтения условия задачи, краткой записи условия и его повторения, выполнения рисунка, схемы или чертежа, анализа физического содержания задачи и выявления путей (способов) ее решения, составления плана решения и выполнения решения в общем виде, прикидки и вычисления, анализа результата и проверки решения.

Чтение и запись условия задачи.

Текст задачи следует учителю читать неторопливо, четко. Затем кратко записать условие и сделать чертеж или схему. Условие нужно еще раз повторить.

Анализ условия.

При разборе задачи прежде всего обращают внимание на физическую сущность ее, на выяснения физических процессов, и законов, рассматриваемых в данной задаче, зависимостей между физическими величинами.

Нужно терпеливо, шаг за шагом приучать учащихся, начиная с седьмого класса, проводить анализ задачи для отыскания правильного пути решения, так как это способствует развитию логического мышления, учеников, и воспитывает сознательный подход к решению задач.

Разбор задачи на уроке часто проводят коллективно в виде беседы учителя с учащимися, входе которого учитель в результате обсуждения логически связанных м/у собой вопросов постепенно подводит учащихся к наиболее рациональному способу решения задач. Иногда полезно разобрать несколько вариантов решения одной и той же задачи, сопоставить их, и выбрать наиболее рациональный. Нужно систематически приучать учащихся самостоятельно анализировать задачи, требуя от них вполне сознательного и обоснованного рассуждения.

Решение задачи.

После разбора условия задачи переходят к ее решению. Решение задачи необходимо сопровождать краткими пояснениями.

Ответ задачи рекомендуется выделить, например подчеркнуть его. Все это приучать школьников к четкости и аккуратности в работе.

Проверка и оценка ответов.

Полученный ответ задачи необходимо проверить. Прежде всего нужно обратить внимание учащихся на реальность ответа. В некоторых случаях при решении задачи ученики получают результаты, явно не соответствующие условию задачи, а иногда противоречащие здравому смыслу. Происходит это от того, что в процессе вычислений они теряют связь с конкретным условием задачи.

Необходимо научит школьников оценивать порядок ответа не только с математической, но и с физической точки зрения, чтобы ученики сразу видели абсурдность таких, например, ответов: кпд какого либо механизма больше ста процентов, температура воды при обычных условиях меньше 0 или больше 100, плотность железа 78 р/см3.

Ученики должны усвоить, что правильность решения задачи можно проверить, решив ее другим способом и сопоставить результаты этих решений, а также выполнив операции с наименованиями единиц физических величин и сравнив ответ с тем наименованием, которое должно получиться в задаче. Чтобы проверить правильность найденного решения в общем виде над в формулу, выражающую решение, вместо буквенных обозначений величин подставить наименования единиц физических величин и произвести с ними те же операции, которые выполнялись бы с вычислениями. Пусть, например, мы нашли формулу для определения осадки "корабля, банки". Для проверки решения вместо букв подставляем единицы физических величин. В результате получаем (М) (метр), т.е. наименование единицы длины, что и соответствует условию задачи.

Пример:

Задача. С высоты h=2м над землей со скоростью v0=4м/с бросают шар в горизонтальном направлении. Определить время падения шара на землю: дальность полета, скорость тела через 0,2 секунд после начала движения.

Дано: v0 = 4 м/с, h = 2 м, t= 0,2 с, q = 9,8 м/с, t - ?, l - ?

Решение: Движение шара сложное: по горизонтали – равномерное, по вертикали – свободное падение. Воспользуемся принципом не зависимости движений. Найдем время, которое тело падало бы отвесно с высоты h = 2 м.

Страницы: 1 2

Полезная информация:

Теоретические аспекты проблемы развития мышления у детей старшего дошкольного возраста
Взгляды отечественных и зарубежных педагогов-психологов на проблему мышления. Мышление - процесс познавательной деятельности индивида, характеризующийся обобщенным и опосредствованным отражением действительности. Мышление возникает на основе практической деятельности из чувственного познания и дале ...

Краткая история художественной обработки древесины
Издавна из дерева возводили дома, изготовляли утварь, посуду, делали игрушки. Древнерусские плотники и столяры строили хоромы и терема, ставили ендовы и скобкари для кваса и медовых напитков, делали и красивую бытовую утварь, например плоские и широкие корыта для теста — дежи. Бочары из дубовых дощ ...

История развития графики
К основным характеристикам многообразия мира, в котором мы существуем, относятся форма и размер окружающих нас предметов. Попытки отобразить эти признаки предпринимались с незапамятных времен. Существует красивый поэтический миф о прекрасной коринфянке, очертившей на озаренной луною скале силуэт св ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru