Методические рекомендации к теме: Доли

Страница 8

.

Вопросы и задания

1. Как найти сумму двух дробей с одинаковыми знаменателями? Как найти разность двух таких дробей?

2. (Устно) Найдите значение числового выражения:

а) б) в)

3. Вы знаете переместительный и сочетательный законы сложения натуральных чисел. Эти законы верны и для дробных чисел. Они помогают группировать слагаемые так, как будет удобнее. Вот пример:

.

Найдите значение выражения, используя законы сложения:

а); б); в) ; г)

4. В 1-й день похода туристы прошли маршрута. Во 2-й день — на часть пути больше, чем в 1-й. А в 3-й — на части меньше, чем во 2-й. а) Какую часть всего пути прошли туристы за три дня? б) Какую часть маршрута им еще предстоит пройти? Задания из учебника:

980, 981,982, 983,986,987,992, 993.

992 Выполните действия:

г) е)

Решение

г)

е)

Решить уравнение:

Б)

г)

Предлагается контрольная работа №2 из приложения.

7. Методические рекомендации к теме: Основное свойство дроби

Перед изложением данной темы полезно вспомнить тему сравнение дробей, а именно тот момент, когда две дроби изображались на координатном луче одной точкой.

Полезными будут ранее заготовленные рисунки на доске:

Вы уже замечали, что две по-разному записанные дроби могут быть равны между собой. Например, и т. д. Как объяснить такое интересное явление?

Ученик: А что тут объяснять? Ведь равенства совершенно понятны, если рассмотреть рисунок.

Эти равенства, конечно, понятны. Но мы хотим обнаружить свойство, которое будет относиться к любым дробям. Как, например, объяснить равенство

?

Ведь рисунок с миллионами клеточек нарисовать не удастся! Здесь без рассуждений не обойтись: А помогут нам рассуждать правила умножения и деления дроби на натуральное число.

Возьмем дробь . Умножим числитель и знаменатель на натуральное число 2.

Поясняется на координатном луче, что это одна и та же точка, значит дроби тоже равны.

Аналогично, числитель и знаменатель дроби сначала делятся на 2, а затем умножаются на 4. В итоге получается цепочка равенств:

.

Получаем формулу, и даем символьную запись:

Эта формула выражает такое свойство:

Если у любой дроби числитель и знаменатель умножить на одно и то же натуральное число, то получится равная ей дробь.

Это важное свойство называют основным свойством дроби.

Страницы: 3 4 5 6 7 8 9 10 11

Полезная информация:

Методика ознакомления дошкольников с цифрами. Современные технологии развития числовых представлений дошкольников
Знакомство детей с цифрами не представляет сложной методической проблемы, поскольку дети 3-4-летнего возраста легко запоминают символические изображения: буквы, цифры, знаки. Нет особой необходимости заучивать с детьми определенный объем символики наизусть в дошкольный период, но и искусственно отг ...

Развитие речи у детей младшего дошкольного возраста в норме
Дошкольный возраст можно назвать периодом наиболее интенсивного освоения смыслов и целей человеческой деятельности. Главным новообразованием становиться новая внутренняя позиция, новый уровень осознания своего места в системе общественных отношений. Особенности эмоционального развития: · ребенок ос ...

Развитие коммуникативной функции речи
Известны два основных вида речи — диалогическая и монологическая. Каждый из них имеет свои особенности. Так, форма протекания диалогической речи (беседа двух или нескольких человек, постановка вопросов и ответы на них) побуждает к неполным, односложным ответам. Неполное предложение, восклицание, ме ...

Категории

Copyright © 2021 - All Rights Reserved - www.oxoz.ru