Сравнение, сложение и вычитание дробей с разными знаменателями

Образование и воспитание » Методика изучения обыкновенных дробей на уроках математики в 5–6 классах » Сравнение, сложение и вычитание дробей с разными знаменателями

Страница 2

Чтобы умножить дробь на натуральное число, надо ее числитель умножить на это число, а знаменатель оставить без изменения.

Для иллюстрации рассмотрим следующую задачу.

Задача 2. Длина прямоугольника дм, а ширина дм (рис.). Чему равна площадь прямоугольника?

Решение. Из рисунка видно, что данный прямоугольник можно получить так: разделить одну сторону квадрата со стороной 1 дм на 5 одинаковых частей и взять 4 такие части, а другую сторону разделить на 3 одинаковые части и взять 2 такие части. При таком делении квадрат будет состоять из 15 равных частей, а прямоугольник будет состоять из 8 таких частей. Значит, площадь прямоугольника равна дм. Но мы знаем, что площадь прямоугольника равна произведению длины и ширины. Поэтому считают, что число получено от умножения на . Итак,

.

Чтобы умножить дробь на дробь, надо: 1) найти произведение числителей и произведение знаменателей этих дробей; 2) первое произведение записать числителем, а второе - знаменателем.

Обычно вначале обозначают произведение числителей и произведение знаменателей, затем производят сокращение и только потом выполняют умножение. В ответе, если это возможно, из дроби исключают целую часть.

Например:

; .

Для того чтобы выполнить умножение смешанных чисел, надо их записать в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.

9. Деление обыкновенных дробей

Задача. Площадь прямоугольника м. Длина одной стороны м. Найдем длину стороны.

Решение. Обозначим длину другой стороны через x м. По формуле площади прямоугольника должно выполняться равенство . Умножим обе части равенства на число , обратное числу . Так как произведение равно 1, то получим, что , или . Таким образом, длина другой стороны прямоугольника равна м.

В этой задаче мы нашли неизвестный множитель в произведении . По смыслу деления это число равно частному от деления числа на число .

Видим, что это частное равно произведению делимого и числа, обратного делителю, т.е.

.

дробь урок математика алгебраический пропедевтика

Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю.

Пример. Разделим на .

Решение. Представим сначала числа и в виде неправильных дробей:

.

Поэтому

.

Страницы: 1 2 3 4

Полезная информация:

Особенности формирования математических понятий в 5–6 классах
Всякое понятие, в том числе и математическое, является абстракцией от множества конкретных объектов, которые описываются им. В понятии отражаются устойчивые свойства изучаемых объектов, явлений. Эти свойства повторяются у всех объектов, которые объединяются понятием. Но каждый реальный объект имеет ...

Условия формирования здорового образа жизни у старших дошкольников
Одним из основных условий формирования здорового образа жизни у старших дошкольников являются физкультурные занятия в дошкольном образовательном учреждении. Физкультурные занятия - основная форма организованного систематического обучения физическим упражнениям в детском саду. Эта форма работы являе ...

Методы обучения психологии
Методы программированного обучения предполагали перестройку традиционного обучения за счет уточнения и операционализации целей, задач, способов решения, форм поощрения и контроля применительно к предметному содержанию знаний. Методы проблемного обучения – акцентировали не аспекты структурирования о ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru