Теоретические положения темы "Обыкновенные дроби"

Страница 2

Примеры: а) 5:7=; б) 49:40=; в) 6:3=; г) 5:1 =5

Любое натуральное число можно записать в виде дроби, числитель которой само число, а знаменатель 1 (см. пример г).

Итак, дроби могут получиться при делении единицы на равные части, при измерении, при делении натуральных чисел.

Сравнение долей

Каждому дробному числу соответствует единственная точка на координатном луче. Для дробных чисел, как и для натуральных чисел, верно правило:

из двух чисел то меньшее, которое расположено на координатном луче левее;

из двух чисел то, большее, которое расположено на координатном луче правее.

Значит, из двух дробей с одинаковыми знаменателями меньше та, у которой меньше числитель, и больше та, у которой больше числитель.

Какие дроби называют правильными, а какие – неправильными?

Рассмотрим дроби

Нетрудно заметить, что у первых трех дробей числители меньше своих знаменателей.

Такие дроби называют правильными дробями.

Определение. Правильной дробью называют дробь, у которой числитель меньше знаменателя.

Так как правильная дробь является частью единицы, то она меньше единицы (рис.6 а). У трех следующих дробей числитель равен знаменателю. Каждая из этих дробей равна единице. Такие дроби называют неправильными дробями (рис. 6, б). У последних трех дробей числитель больше знаменателя. Такие дроби тоже называют неправильными дробями. Каждая из этих дробей больше единицы (рис. 6, в).

Определение. Неправильной дробью называют дробь, у которой числитель равен знаменателю или больше знаменателя.

С помощью букв можно записать:

дробь правильная, если а<b, неправильная, если а>b или а = b, где а — натуральное число или нуль, b — натуральное число.

Сложение и вычитание дробей с одинаковыми знаменателями

Правило: Чтобы сложить дроби с одинаковыми знаменателями, надо составить дробь, у которой числитель равен сумме числителей данных дробей, а знаменатель остается без изменения.

Это правило записывается так:

.

Замечания.

1. Если в результате сложения дробей получится сократимая дробь, то ее можно сократить.

Пример:

.

2. Если при сложении дробей получится неправильная дробь, то из нее можно выделить целую часть.

Примеры:

1) 2)

3. Сложение дроби и натурального числа записывают так:

+3 = 3.

Значит, число 3можно записать в виде суммы:

Страницы: 1 2 3 4 5 6

Полезная информация:

Взаимодействие семьи и школы как необходимое условие эффективности образовательного процесса
Важную роль в процессе формирования коллектива класса оказывает взаимодействие семьи и школы. Семья вместе со школой создаёт тот важнейший комплекс факторов и условий воспитывающей среды, который определяет эффективность всего образовательного процесса. Если школа сделает родителей своими союзникам ...

Отличительные черты деловой игры
Общеизвестно, что отсутствие интереса к изучению того или иного предмета является одной их важнейших причин низких результатов обучения учащихся. Как вызвать заинтересованность у детей в изучении отдельных тем и всего предмета? Одним из путей решения этой проблемы является организация и проведения ...

Рекомендации по руководству командно-игровой деятельностью
Игра существенно влияет на психическое состояние учащихся и, как следствие, на характеристики процесса обучения и его результаты. С одной стороны, учебный материал усваивается лучше и с меньшим напряжением сил, если это происходит в условиях повышенной мотивации познавательной и трудовой деятельнос ...

Категории

Copyright © 2019 - All Rights Reserved - www.oxoz.ru