Особенности формирования математических понятий в 5–6 классах

Образование и воспитание » Формирование понятия дроби в 5-6 классах » Особенности формирования математических понятий в 5–6 классах

Всякое понятие, в том числе и математическое, является абстракцией от множества конкретных объектов, которые описываются им. В понятии отражаются устойчивые свойства изучаемых объектов, явлений. Эти свойства повторяются у всех объектов, которые объединяются понятием. Но каждый реальный объект имеет некоторые другие свойства, присущие только ему. Различие в несущественных свойствах только оттеняет, подчёркивает существенные.

Если в начальных классах обучение ведётся в основном на наглядно образном уровне мышления, то в 5–6 классах более глубоко развивается словесно-логическое мышление. Содержанием такого мышления являются понятия, сущность которых уже не внешние, конкретные, наглядные признаки предметов и их отношения, а внутренние, наиболее существенные свойства предметов и явлений и соотношения между ними.

Все понятия, изучаемые в начальных классах, в дальнейшем переосмысливаются на более высоком теоретическом уровне (переменная, уравнение, фигура и др.) или углубляются и обобщаются (понятие о числе, алгоритмы арифметических действий, законы арифметических действий и др.).

Не всегда есть возможность и необходимость формировать определения по конструкции: 1) указывается род; 2) указываются те признаки, которые отличают этот вид (определяемое понятие) от других видов ближайшего рода. Учащихся учат на наглядно-интуитивной основе понимать значение существенных и несущественных признаков для раскрытия сути определяемого понятия, то есть достаточно сформировать правильное представление. В курсе математики 5–6 классов это часто достигается с помощью поясняющих описаний – доступных для учащихся предложений, которые вызывают у них один наглядный образ, и помогают усвоить понятие. Здесь не ставится требование сведения нового понятия к ранее изученным понятиям. Усвоение должно быть доведено до такого уровня, чтобы в дальнейшем, не вспоминая описания, ученик мог узнать объект, относящийся к данному понятию. Пример, поясняющие описания многоугольника, многогранника, расстояния, симметрий, натурального числа и др.

Большинство детей 5-го класса воспринимает объяснительный текст учебника, формулировки определений и правил вполне однородными – им трудно найти определяемое и определяющее понятие, указание на математические свойства математического объекта. Именно этим в значительной степени объясняются трудности в заучивании и верном воспроизведении теоретических положений, правил действий: все слова ученику кажутся одинаково важными (или одинаково неважными?), а потому заучивание происходит чисто механически, и потеря или замена остаются им незамеченными.

Главное в работе с определениями в 5–6 классах – показывать учащимся отличие определений от других предложений, выделенных в учебнике жирным шрифтом; учить их анализировать конструкцию определений; индуктивным методом формировать определения основных понятий.

Если учащиеся в 5–6 классах получат необходимые навыки в работе с определениями, будут понимать простые логические рассуждения и отличать логические конструкции различных математических предложений, то они смогут изучать курс математики старших классов более осознано.

Определения рассматриваются в простейшем варианте через род и вид. Формирование понятия доказательства опирается на реальные жизненные представления о необходимости обоснования, её убедительности рассуждений. Этот начальный этап постепенно сменяется представлениями о доказательстве, адекватном математике.

Проанализировав учебники для 5–6 классов, увидим, что аксиоматические определения отсутствуют, геометрические понятия в большинстве своём определяются через конструирование, алгебраическим понятиям, в основном, даются определения-соглашения, поясняющее описание.

Полезная информация:

Об общих подходах к оцениванию при безотметочном обучении
В основе данных подходов лежат следующие ключевые вопросы: - что оценивать (т.е. что именно подлежит оцениванию, а что оценивать не следует); - как оценивать (т.е. какими средствами должно фиксироваться то, что оценивается); - каким образом оценивать (т.е. какова должна быть сама процедура оцениван ...

Методики развития исследовательских умений у младших школьников
Развитие исследовательских умений младших школьников осуществляется в 4 этапа, что соответствует 4 годам обучения в начальной школе. 1 этап - соответствует 1 классу. А.И.Савенков считает, что развитие исследовательских умений необходимо начинать с тренинга, который является пропедевтикой к проведен ...

Методика организации труда дежурных в старшем дошкольном возрасте
Дежурство старших дошкольников постепенно усложняется как по содержанию труда, так и по формам объединения детей, по требованию к самостоятельности и самоорганизации в работе. Важной задачей организации дежурств является формирование у детей ответственности за порученное дело, стремление работать н ...

Категории

Copyright © 2020 - All Rights Reserved - www.oxoz.ru